
Control System Toolbox™

Getting Started Guide

R2015a



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Getting Started Guide
© COPYRIGHT 2000–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History

November 2002 First printing New Version 5.0 (Release 12)
June 2001 Second printing Revised for Version 5.1 (Release 12.1)
July 2002 Online only Revised for Version 5.2 (Release 13)
June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
March 2007 Online only Revised for Version 8.0 (Release 2007a)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)
March 2008 Online only Revised for Version 8.1 (Release 2008a)
October 2008 Third printing Revised for Version 8.2 (Release 2008b)
March 2009 Online only Revised for Version 8.3 (Release 2009a)
September 2009 Online only Revised for Version 8.4 (Release 2009b)
March 2010 Online only Revised for Version 8.5 (Release 2010a)
September 2010 Online only Revised for Version 9.0 (Release 2010b)
April 2011 Online only Revised for Version 9.1 (Release 2011a)
September 2011 Online only Revised for Version 9.2 (Release 2011b)
March 2012 Online only Revised for Version 9.3 (Release 2012a)
September 2012 Online only Revised for Version 9.4 (Release 2012b)
March 2013 Online only Revised for Version 9.5 (Release 2013a)
September 2013 Online only Revised for Version 9.6 (Release 2013b)
March 2014 Online only Revised for Version 9.7 (Release 2014a)
October 2014 Online only Revised for Version 9.8 (Release 2014b)
March 2015 Online only Revised for Version 9.9 (Release 2015a)





v

Contents

Product Overview
1

Control System Toolbox Product Description . . . . . . . . . . . . 1-2
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Building Models
2

Linear (LTI) Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
What Is a Plant? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Linear Model Representations . . . . . . . . . . . . . . . . . . . . . . . . 2-2
SISO Example: The DC Motor . . . . . . . . . . . . . . . . . . . . . . . 2-3
Building SISO Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Constructing Discrete Time Systems . . . . . . . . . . . . . . . . . . . 2-8
Adding Delays to Linear Models . . . . . . . . . . . . . . . . . . . . . . 2-9
LTI Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

MIMO Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
MIMO Example: State-Space Model of Jet Transport

Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Constructing MIMO Transfer Functions . . . . . . . . . . . . . . . 2-14
Accessing I/O Pairs in MIMO Systems . . . . . . . . . . . . . . . . 2-16

Arrays of Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Model Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

Interconnecting Linear Models . . . . . . . . . . . . . . . . . . . . . . . 2-20
Arithmetic Operations for Interconnecting Models . . . . . . . 2-20
Feedback Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . 2-21



vi Contents

Converting Between Continuous- and Discrete- Time
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

Available Commands for Continuous/Discrete Conversion . . 2-22
Available Methods for Continuous/Discrete Conversion . . . . 2-22
Digitizing the Discrete DC Motor Model . . . . . . . . . . . . . . . 2-22

Reducing Model Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Model Order Reduction Commands . . . . . . . . . . . . . . . . . . . 2-25
Techniques for Reducing Model Order . . . . . . . . . . . . . . . . . 2-25
Example: Gasifier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26

Analyzing Models
3

Linear Analysis Using the Linear System Analyzer . . . . . . . 3-2

Simulate Models with Arbitrary Inputs and Initial
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

What is the Linear Simulation Tool? . . . . . . . . . . . . . . . . . . . 3-7
Opening the Linear Simulation Tool . . . . . . . . . . . . . . . . . . . 3-7
Working with the Linear Simulation Tool . . . . . . . . . . . . . . . 3-8
Importing Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Example: Loading Inputs from a Microsoft Excel

Spreadsheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Example: Importing Inputs from the Workspace . . . . . . . . . 3-13
Designing Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Specifying Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . 3-19

Designing Compensators
4

Choosing a PID Controller Design Tool . . . . . . . . . . . . . . . . . 4-2

Designing PID Controllers with the PID Tuner . . . . . . . . . . 4-3
PID Tuner Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
PID Controller Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
PID Controller Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5



vii

Analyze Design in PID Tuner . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Plot System Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
View Numeric Values of System Characteristics . . . . . . . . . . 4-8
Refine the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

PID Controller Design for Fast Reference Tracking . . . . . . 4-11

Tune PID Controller to Favor Reference Tracking or
Disturbance Rejection (PID Tuner) . . . . . . . . . . . . . . . . . . 4-21

Tune PID Controller to Favor Reference Tracking or
Disturbance Rejection at Command Line . . . . . . . . . . . . . 4-33

Interactively Estimate Plant Parameters from Response
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40

Preprocessing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51
Ways to Preprocess Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-51
Remove Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52
Scale Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52
Extract Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53
Filter Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53
Resample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-54
Replace Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-54

PID Tuning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-56

System Identification for PID Control . . . . . . . . . . . . . . . . . 4-58
Plant Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58
Linear Approximation of Nonlinear Systems for PID Control 4-59
Linear Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60
Advanced System Identification Tasks . . . . . . . . . . . . . . . . 4-61

Input/Output Data for Identification . . . . . . . . . . . . . . . . . . 4-62
Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62
Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62

Choosing Identified Plant Structure . . . . . . . . . . . . . . . . . . . 4-64
Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65
State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-68
Existing Plant Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-70
Switching Between Model Structures . . . . . . . . . . . . . . . . . 4-71
Estimating Parameter Values . . . . . . . . . . . . . . . . . . . . . . . 4-72



viii Contents

Handling Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 4-72

SISO Design Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-74
Tune Compensator Parameters Using the SISO Design Tool 4-74
Components of the SISO Tool . . . . . . . . . . . . . . . . . . . . . . . 4-83
Design Options in the SISO Tool . . . . . . . . . . . . . . . . . . . . . 4-84
Opening the SISO Design Tool . . . . . . . . . . . . . . . . . . . . . . 4-84
Using the SISO Design Task Node in the Control and

Estimation Tools Manager . . . . . . . . . . . . . . . . . . . . . . . 4-86
Importing Models into the SISO Design Tool . . . . . . . . . . . . 4-87
Feedback Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-91
Analysis Plots for Loop Responses . . . . . . . . . . . . . . . . . . . . 4-93
Using the Graphical Tuning Window . . . . . . . . . . . . . . . . . 4-99
Exporting the Compensator and Models . . . . . . . . . . . . . . 4-105
Storing and Retrieving Intermediate Designs . . . . . . . . . . 4-107

Bode Diagram Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-110
What Is Bode Diagram Design? . . . . . . . . . . . . . . . . . . . . . 4-110
Bode Diagram Design for DC Motor . . . . . . . . . . . . . . . . . 4-110
Adjusting the Compensator Gain . . . . . . . . . . . . . . . . . . . 4-111
Adjusting the Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 4-112
Adding an Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-114
Adding a Lead Network . . . . . . . . . . . . . . . . . . . . . . . . . . 4-118
Moving Compensator Poles and Zeros . . . . . . . . . . . . . . . . 4-123
Adding a Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-126
Modifying a Prefilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-131

Root Locus Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-136
What Is Root Locus Design? . . . . . . . . . . . . . . . . . . . . . . . 4-136
Root Locus Design for Electrohydraulic Servomechanism . 4-137
Changing the Compensator Gain . . . . . . . . . . . . . . . . . . . . 4-143
Adding Poles and Zeros to the Compensator . . . . . . . . . . . 4-145
Editing Compensator Pole and Zero Locations . . . . . . . . . . 4-150
Viewing Damping Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 4-154

Nichols Plot Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-157
What Is Nichols Plot Design? . . . . . . . . . . . . . . . . . . . . . . 4-157
Nichols Plot Design for DC Motor . . . . . . . . . . . . . . . . . . . 4-157
Opening a Nichols Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-158
Adjusting the Compensator Gain . . . . . . . . . . . . . . . . . . . 4-159
Adding an Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-161
Adding a Lead Network . . . . . . . . . . . . . . . . . . . . . . . . . . 4-163



ix

Automated Tuning Design . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167
Supported Automated Tuning Methods . . . . . . . . . . . . . . . 4-167
Loading and Displaying the DC Motor Example for Automated

Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-167
Applying Automated PID Tuning . . . . . . . . . . . . . . . . . . . 4-169

Multi-Loop Compensator Design . . . . . . . . . . . . . . . . . . . . . 4-173
When to Use Multi-Loop Compensator Design . . . . . . . . . . 4-173
Workflow for Multi-Loop Compensator Design . . . . . . . . . 4-173
Position Control of a DC Motor . . . . . . . . . . . . . . . . . . . . . 4-173

Control Design Analysis of Multiple Models . . . . . . . . . . . 4-184
Multiple Models Represent System Variations . . . . . . . . . 4-184
Control Design Analysis Using the SISO Design Tool . . . . 4-184
Specifying a Nominal Model . . . . . . . . . . . . . . . . . . . . . . . 4-185
Frequency Grid for Multimodel Computations . . . . . . . . . . 4-187
How to Analyze the Controller Design for Multiple Models 4-188

Functions for Compensator Design . . . . . . . . . . . . . . . . . . . 4-198
When to Use Functions for Compensator Design . . . . . . . . 4-198
Root Locus Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-198
Pole Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-199
Linear-Quadratic-Gaussian (LQG) Design . . . . . . . . . . . . . 4-202
Design an LQG Regulator . . . . . . . . . . . . . . . . . . . . . . . . . 4-211
Design an LQG Servo Controller . . . . . . . . . . . . . . . . . . . . 4-214
Design an LQR Servo Controller in Simulink . . . . . . . . . . 4-217

State Estimation Using Time-Varying Kalman Filter . . . . 4-223

Kalman Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-237





1

Product Overview



1 Product Overview

1-2

Control System Toolbox Product Description
Design and analyze control systems

Control System Toolbox provides industry-standard algorithms and apps for
systematically analyzing, designing, and tuning linear control systems. You can specify
your system as a transfer function, state-space, zero-pole-gain, or frequency-response
model. Apps and functions, such as step response plot and Bode plot, let you visualize
system behavior in time domain and frequency domain. You can tune compensator
parameters using automatic PID controller tuning, Bode loop shaping, root locus method,
LQR/LQG design, and other interactive and automated techniques. You can validate your
design by verifying rise time, overshoot, settling time, gain and phase margins, and other
requirements.

Key Features

• Transfer-function, state-space, zero-pole-gain, and frequency-response models of
linear systems

• Series, parallel, feedback, and general block-diagram connection of linear models
• Step response, Nyquist plot, and other time- and frequency-domain tools for analyzing

stability and performance measures
• Root locus, Bode diagrams, LQR, LQG, and other classical and state-space control

system design techniques
• Automatic tuning of PID controllers
• Model representation conversion, continuous-time model discretization, and low-order

approximation of high-order systems
• LAPACK and SLICOT algorithms optimized for accuracy and performance



2

Building Models

• “Linear (LTI) Models” on page 2-2
• “MIMO Models” on page 2-12
• “Arrays of Linear Models” on page 2-17
• “Model Characteristics” on page 2-19
• “Interconnecting Linear Models” on page 2-20
• “Converting Between Continuous- and Discrete- Time Systems” on page 2-22
• “Reducing Model Order” on page 2-25



2 Building Models

2-2

Linear (LTI) Models

In this section...

“What Is a Plant?” on page 2-2
“Linear Model Representations” on page 2-2
“SISO Example: The DC Motor” on page 2-3
“Building SISO Models” on page 2-5
“Constructing Discrete Time Systems” on page 2-8
“Adding Delays to Linear Models” on page 2-9
“LTI Objects” on page 2-10

What Is a Plant?

Typically, control engineers begin by developing a mathematical description of the
dynamic system that they want to control. The system to be controlled is called a plant.
As an example of a plant, this section uses the DC motor. This section develops the
differential equations that describe the electromechanical properties of a DC motor with
an inertial load. It then shows you how to use the Control System Toolbox functions to
build linear models based on these equations.

Linear Model Representations

You can use Control System Toolbox functions to create the following model
representations:

• State-space models (SS) of the form

dx

dt
Ax Bu

y Cx Du

= +

= +

where A, B, C, and D are matrices of appropriate dimensions, x is the state vector,
and u and y are the input and output vectors.

• Transfer functions (TF), for example,



 Linear (LTI) Models

2-3

H s
s

s s

( ) =
+

+ +

2

10
2

• Zero-pole-gain (ZPK) models, for example,

H z
z j z j

z z
( )

( )( )

( . )( . )
=

+ + + -

+ +

3
1 1

0 2 0 1

• Frequency response data (FRD) models, which consist of sampled measurements of
a system's frequency response. For example, you can store experimentally collected
frequency response data in an FRD model.

Note The design of FRD models is a specialized subject that this guide does not
address. See “Frequency Response Data (FRD) Models” for a discussion of this topic.

SISO Example: The DC Motor

A simple model of a DC motor driving an inertial load shows the angular rate of the load,
w( )t , as the output and applied voltage, uapp t( ) , as the input. The ultimate goal of this
example is to control the angular rate by varying the applied voltage. This figure shows a
simple model of the DC motor.

A Simple Model of a DC Motor Driving an Inertial Load



2 Building Models

2-4

In this model, the dynamics of the motor itself are idealized; for instance, the magnetic
field is assumed to be constant. The resistance of the circuit is denoted by R and the
self-inductance of the armature by L. If you are unfamiliar with the basics of DC motor
modeling, consult any basic text on physical modeling. With this simple model and basic
laws of physics, it is possible to develop differential equations that describe the behavior
of this electromechanical system. In this example, the relationships between electric
potential and mechanical force are Faraday's law of induction and Ampère's law for the
force on a conductor moving through a magnetic field.

Mathematical Derivation

The torque t  seen at the shaft of the motor is proportional to the current i induced by the
applied voltage,

t( ) ( )t K i t
m

=

where Km, the armature constant, is related to physical properties of the motor, such as
magnetic field strength, the number of turns of wire around the conductor coil, and so
on. The back (induced) electromotive force, uemf , is a voltage proportional to the angular
rate w  seen at the shaft,

u wemf bt K t( ) ( )=

where Kb, the emf constant, also depends on certain physical properties of the motor.

The mechanical part of the motor equations is derived using Newton's law, which states
that the inertial load J times the derivative of angular rate equals the sum of all the
torques about the motor shaft. The result is this equation,

J
dw

dt
K t K i ti f m= = - +Â t w( ) ( )

where K f w  is a linear approximation for viscous friction.

Finally, the electrical part of the motor equations can be described by

u uapp emft t L
di

dt
Ri t( ) ( ) ( )- = +



 Linear (LTI) Models

2-5

or, solving for the applied voltage and substituting for the back emf,

u wapp bt L
di

dt
Ri t K t( ) ( ) ( )= + +

This sequence of equations leads to a set of two differential equations that describe the
behavior of the motor, the first for the induced current,

di

dt

R

L
i t

K

L
t

L
tb

app= - - +( ) ( ) ( )w u
1

and the second for the resulting angular rate,

d

dt J
K t

J
K i tf m

w
w= - +

1 1
( ) ( )

State-Space Equations for the DC Motor

Given the two differential equations derived in the last section, you can now develop a
state-space representation of the DC motor as a dynamic system. The current i  and the
angular rate ω are the two states of the system. The applied voltage, uapp , is the input to
the system, and the angular velocity ω is the output.

d

dt

i

R

L

K

L

K

J

K

J

i
L

b

m fw w

È

Î
Í

˘

˚
˙ =

- -

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

◊
È

Î
Í

˘

˚
˙ +

È

Î

Í
Í
Í

˘

˚

1

0

˙̇
˙
˙

◊uapp t( )

y t
i

tapp( ) ( )= [ ] ◊
È

Î
Í

˘

˚
˙ + [ ] ◊0 1 0

w
u

State-Space Representation of the DC Motor Example

Building SISO Models

After you develop a set of differential equations that describe your plant, you can
construct SISO models using simple commands. The following sections discuss

• Constructing a state-space model of the DC motor



2 Building Models

2-6

• Converting between model representations
• Creating transfer function and zero/pole/gain models

Constructing a State-Space Model of the DC Motor

Enter the following nominal values for the various parameters of a DC motor.

R= 2.0 % Ohms

L= 0.5 % Henrys

Km = .015 % torque constant

Kb = .015 % emf constant

Kf = 0.2 % Nms

J= 0.02 % kg.m^2

Given these values, you can construct the numerical state-space representation using the
ss function.

A = [-R/L -Kb/L; Km/J -Kf/J]

B = [1/L; 0];

C = [0 1];

D = [0];

sys_dc = ss(A,B,C,D)

These commands return the following result:

a = 

                        x1           x2

           x1           -4        -0.03

           x2         0.75          -10

 

 

b = 

                        u1

           x1            2

           x2            0

 

 

c = 

                        x1           x2

           y1            0            1

 

 

d = 

                        u1

           y1            0



 Linear (LTI) Models

2-7

Converting Between Model Representations

Now that you have a state-space representation of the DC motor, you can convert to other
model representations, including transfer function (TF) and zero/pole/gain (ZPK) models.
Transfer Function Representation

You can use tf to convert from the state-space representation to the transfer function.
For example, use this code to convert to the transfer function representation of the DC
motor.

sys_tf = tf(sys_dc)

 

Transfer function:

       1.5

------------------

s^2 + 14 s + 40.02

Zero/Pole/Gain Representation

Similarly, the zpk function converts from state-space or transfer function
representations to the zero/pole/gain format. Use this code to convert from the state-
space representation to the zero/pole/gain form for the DC motor.

sys_zpk = zpk(sys_dc)

 

Zero/pole/gain:

        1.5

-------------------

(s+4.004) (s+9.996)

Note The state-space representation is best suited for numerical computations. For
highest accuracy, convert to state space prior to combining models and avoid the
transfer function and zero/pole/gain representations, except for model specification and
inspection.

Constructing Transfer Function and Zero/Pole/Gain Models

In the DC motor example, the state-space approach produces a set of matrices that
represents the model. If you choose a different approach, you can construct the
corresponding models using tf, zpk, ss, or frd.



2 Building Models

2-8

sys = tf(num,den)               % Transfer function

sys = zpk(z,p,k)                % Zero/pole/gain

sys = ss(a,b,c,d)               % State-space

sys = frd(response,frequencies) % Frequency response data

For example, you can create the transfer function by specifying the numerator and
denominator with this code.

sys_tf = tf(1.5,[1 14 40.02])

 

Transfer function:

       1.5

------------------

s^2 + 14 s + 40.02

Alternatively, if you want to create the transfer function of the DC motor directly, use
these commands.

s = tf('s');

sys_tf = 1.5/(s^2+14*s+40.02)

These commands result in this transfer function.

Transfer function:

        1.5

--------------------

s^2 + 14 s + 40.02

To build the zero/pole/gain model, use this command.

sys_zpk = zpk([],[-9.996 -4.004], 1.5)

This command returns the following zero/pole/gain representation.

Zero/pole/gain:

        1.5

-------------------

(s+9.996) (s+4.004)

Constructing Discrete Time Systems

The Control System Toolbox software provides full support for discrete-time systems.
You can create discrete systems in the same way that you create analog systems; the



 Linear (LTI) Models

2-9

only difference is that you must specify a sample time period for any model you build. For
example,

sys_disc = tf(1, [1 1], .01);

creates a SISO model in the transfer function format.

Transfer function:

  1

-----

z + 1

 

Sample time: 0.01

Adding Time Delays to Discrete-Time Models

You can add time delays to discrete-time models by specifying an input delay, output
delay, or I/O delay when building the model. The time delay must be a nonnegative
integer that represents a multiple of the sample time. For example,

sys_delay = tf(1, [1 1], 0.01,'ioDelay',5)

returns a system with an I/O delay of 5 s.

Transfer function:

           1

z^(-5) * -----

         z + 1

 

Sample time: 0.01

Adding Delays to Linear Models

You can add time delays to linear models by specifying an input delay, output delay, or
I/O delay when building a model. For example, to add an I/O delay to the DC motor, use
this code.

sys_tfdelay = tf(1.5,[1 14 40.02],'ioDelay',0.05)

This command constructs the DC motor transfer function, but adds a 0.05 second delay.

Transfer function:

                      1.5



2 Building Models

2-10

exp(-0.05*s) * ------------------

               s^2 + 14 s + 40.02

For a complete description of adding time delays to models and closing loops with time
delays, see “Models with Time Delays”.

LTI Objects

For convenience, the Control System Toolbox software uses custom data structures called
LTI objects to store model-related data. For example, the variable sys_dc created for
the DC motor example is called an SS object. There are also TF, ZPK, and FRD objects
for transfer function, zero/pole/gain, and frequency data response models respectively.
The four LTI objects encapsulate the model data and enable you to manipulate linear
systems as single entities rather than as collections of vectors or matrices.

To see what LTI objects contain, use the get command. This code describes the contents
of sys_dc from the DC motor example.

get(sys_dc)

               a: [2x2 double]

               b: [2x1 double]

               c: [0 1]       

               d: 0           

               e: []          

       StateName: {2x1 cell}  

   InternalDelay: [0x1 double]

              Ts: 0           

      InputDelay: 0           

     OutputDelay: 0           

       InputName: {''}        

      OutputName: {''}        

      InputGroup: [1x1 struct]

     OutputGroup: [1x1 struct]

            Name: ''          

           Notes: {}          

        UserData: [] 

You can manipulate the data contained in LTI objects using the set command; see the
Control System Toolbox online reference pages for descriptions of set and get.

Another convenient way to set or retrieve LTI model properties is to access them directly
using dot notation. For example, if you want to access the value of the A matrix, instead
of using get, you can type



 Linear (LTI) Models

2-11

sys_dc.a

at the MATLAB® prompt. This notation returns the A matrix.

ans =

   -4.0000   -0.0300

    0.7500  -10.0000

Similarly, if you want to change the values of the A matrix, you can do so directly, as this
code shows.

A_new = [-4.5 -0.05; 0.8 -12.0];

sys_dc.a = A_new;



2 Building Models

2-12

MIMO Models

In this section...

“MIMO Example: State-Space Model of Jet Transport Aircraft” on page 2-12
“Constructing MIMO Transfer Functions” on page 2-14
“Accessing I/O Pairs in MIMO Systems” on page 2-16

MIMO Example: State-Space Model of Jet Transport Aircraft

You can use the same functions that apply to SISO systems to create multiple-input,
multiple-output (MIMO) models. This example shows how to build a MIMO model of a
jet transport. Because the development of a physical model for a jet aircraft is lengthy,
only the state-space equations are presented here. See any standard text in aviation for a
more complete discussion of the physics behind aircraft flight.

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is

A = [-0.0558   -0.9968    0.0802    0.0415

      0.5980   -0.1150   -0.0318         0

     -3.0500    0.3880   -0.4650         0

           0    0.0805    1.0000         0];

B = [ 0.0073         0

     -0.4750    0.0077

      0.1530    0.1430

           0         0];

C = [0     1     0     0

     0     0     0     1];

D = [0     0

     0     0];

Use the following commands to specify this state-space model as an LTI object and attach
names to the states, inputs, and outputs.

states = {'beta' 'yaw' 'roll' 'phi'};

inputs = {'rudder' 'aileron'};

outputs = {'yaw rate' 'bank angle'};

sys_mimo = ss(A,B,C,D,'statename',states,...



 MIMO Models

2-13

'inputname',inputs,...

'outputname',outputs);

You can display the LTI model by typing sys_mimo.

sys_mimo

 

a = 

                      beta          yaw         roll          phi

         beta      -0.0558      -0.9968       0.0802       0.0415

          yaw        0.598       -0.115      -0.0318            0

         roll        -3.05        0.388       -0.465            0

          phi            0       0.0805            1            0

 

 

b = 

                    rudder      aileron

         beta       0.0073            0

          yaw       -0.475       0.0077

         roll        0.153        0.143

          phi            0            0

 

 

c = 

                      beta          yaw         roll          phi

     yaw rate            0            1            0            0

   bank angle            0            0            0            1

 

 

d = 

                    rudder      aileron

     yaw rate            0            0

   bank angle            0            0

 

Continuous-time model.

The model has two inputs and two outputs. The units are radians for beta (sideslip
angle) and phi (bank angle) and radians/sec for yaw (yaw rate) and roll (roll rate). The
rudder and aileron deflections are in degrees.

As in the SISO case, use tf to derive the transfer function representation.

tf(sys_mimo)

 

Transfer function from input "rudder" to output...



2 Building Models

2-14

               -0.475 s^3 - 0.2479 s^2 - 0.1187 s - 0.05633

 yaw rate:  ---------------------------------------------------

            s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

 

                         0.1148 s^2 - 0.2004 s - 1.373

 bank angle:  ---------------------------------------------------

              s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

 

Transfer function from input "aileron" to output...

            0.0077 s^3 - 0.0005372 s^2 + 0.008688 s + 0.004523

 yaw rate:  ---------------------------------------------------

            s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

 

                        0.1436 s^2 + 0.02737 s + 0.1104

 bank angle:  ---------------------------------------------------

              s^4 + 0.6358 s^3 + 0.9389 s^2 + 0.5116 s + 0.003674

Constructing MIMO Transfer Functions

MIMO transfer functions are two-dimensional arrays of elementary SISO transfer
functions. There are two ways to specify MIMO transfer function models:

• Concatenation of SISO transfer function models
• Using tf with cell array arguments

Concatenation of SISO Models

Consider the following single-input, two-output transfer function.

H s

s

s

s

s s

( ) =

-

+

+

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1

1

2

4 5
2

You can specify H(s) by concatenation of its SISO entries. For instance,

h11 = tf([1 -1],[1 1]);  

h21 = tf([1 2],[1 4 5]);  

or, equivalently,

s = tf('s')



 MIMO Models

2-15

h11 = (s-1)/(s+1);

h21 = (s+2)/(s^2+4*s+5); 

can be concatenated to form H(s).

H = [h11; h21]

This syntax mimics standard matrix concatenation and tends to be easier and more
readable for MIMO systems with many inputs and/or outputs.

Using the tf Function with Cell Arrays

Alternatively, to define MIMO transfer functions using tf, you need two cell arrays (say,
N and D) to represent the sets of numerator and denominator polynomials, respectively.
See Cell Arrays in the MATLAB documentation for more details on cell arrays.

For example, for the rational transfer matrix H(s), the two cell arrays N and D should
contain the row-vector representations of the polynomial entries of

N s
s

s
D s

s

s s

( ) ( )=
-

+

È

Î
Í

˘

˚
˙ =

+

+ +

È

Î
Í

˘

˚
˙

1

2

1

4 5
2

You can specify this MIMO transfer matrix H(s) by typing

N = {[1 -1];[1 2]};   % Cell array for N(s)

D = {[1 1];[1 4 5]}; % Cell array for D(s)

H = tf(N,D)

These commands return the following result:

Transfer function from input to output...

      s - 1

 #1:  -----

      s + 1

 

          s + 2

 #2:  -------------

      s^2 + 4 s + 5

Notice that both N and D have the same dimensions as H. For a general MIMO
transfer matrix H(s), the cell array entries N{i,j} and D{i,j} should be row-vector
representations of the numerator and denominator of Hij(s), the ijth entry of the transfer
matrix H(s).



2 Building Models

2-16

Accessing I/O Pairs in MIMO Systems

After you define a MIMO system, you can access and manipulate I/O pairs by specifying
input and output pairs of the system. For instance, if sys_mimo is a MIMO system with
two inputs and three outputs,

sys_mimo(3,1)

extracts the subsystem, mapping the first input to the third output. Row indices select
the outputs and column indices select the inputs. Similarly,

sys_mimo(3,1) = tf(1,[1 0])

redefines the transfer function between the first input and third output as an integrator.



 Arrays of Linear Models

2-17

Arrays of Linear Models

You can specify and manipulate collections of linear models as single entities using LTI
arrays. For example, if you want to vary the Kb and Km parameters for the DC motor and
store the resulting state-space models, use this code.

K = [0.1 0.15 0.2]; % Several values for Km and Kb

A1 = [-R/L -K(1)/L; K(1)/J -Kf/J];

A2 = [-R/L -K(2)/L; K(2)/J -Kf/J];

A3 = [-R/L -K(3)/L; K(3)/J -Kf/J];

sys_lti(:,:,1)= ss(A1,B,C,D);

sys_lti(:,:,2)= ss(A2,B,C,D);

sys_lti(:,:,3)= ss(A3,B,C,D);

The number of inputs and outputs must be the same for all linear models encapsulated
by the LTI array, but the model order (number of states) can vary from model to model
within a single LTI array.

The LTI array sys_lti contains the state-space models for each value of K. Type
sys_lti to see the contents of the LTI array.

Model sys_lti(:,:,1,1)

======================

 

  a = 

                        x1           x2

           x1           -4         -0.2

           x2            5          -10

.

.

.

Model sys_lti(:,:,2,1)

======================

 

  a = 

                        x1           x2

           x1           -4         -0.3

           x2          7.5          -10

.

.

.

Model sys_lti(:,:,3,1)

======================

 



2 Building Models

2-18

  a = 

                        x1           x2

           x1           -4         -0.4

           x2           10          -10

.

.

.

3x1 array of continuous-time state-space models.

You can manipulate the LTI array like any other object. For example,

step(sys_lti)

produces a plot containing step responses for all three state-space models.

Step Responses for an LTI Array Containing Three Models

LTI arrays are useful for performing batch analysis on an entire set of models. For more
information, see “Model Arrays”.



 Model Characteristics

2-19

Model Characteristics

You can use the Control System Toolbox commands to query model characteristics
such as the I/O dimensions, poles, zeros, and DC gain. These commands apply to both
continuous- and discrete-time models. Their LTI-based syntax is summarized in the table
below.

Commands to Query Model Characteristics

Command Description

size(model_name) Number of inputs and outputs
ndims(model_name) Number of dimensions
isct(model_name) Returns 1 for continuous systems
isdt(model_name) Returns 1 for discrete systems
hasdelay(model_name) True if system has delays
pole(model_name) System poles
zero(model_name) System (transmission) zeros
dcgain(model_name) DC gain
norm(model_name) System norms (H2 and L∞)
covar(model_name,W) Covariance of response to white noise
bandwidth(model_name) Frequency response bandwidth
order(model_name) LTI model order
pzmap(model_name) Compute pole-zero map of LTI models
damp(model_name) Natural frequency and damping of system poles
class(model_name) Create object or return class of object
isa(model_name) Determine whether input is object of given class
isempty(model_name) Determine whether LTI model is empty
isproper(model_name) Determine whether LTI model is proper
issiso(model_name) Determine whether LTI model is single-input/single-

output (SISO)
isstable(model_name) Determine whether system is stable
reshape(model_name) Change shape of LTI array



2 Building Models

2-20

Interconnecting Linear Models

In this section...

“Arithmetic Operations for Interconnecting Models” on page 2-20
“Feedback Interconnections” on page 2-21

Arithmetic Operations for Interconnecting Models

You can perform arithmetic on LTI models, such as addition, multiplication, or
concatenation. Addition performs a parallel interconnection. For example, typing

tf(1,[1 0]) + tf([1 1],[1 2])   % 1/s + (s+1)/(s+2)

produces this transfer function.

Transfer function:

s^2 + 2 s + 2

-------------

  s^2 + 2 s

Multiplication performs a series interconnection. For example, typing

2 * tf(1,[1 0])*tf([1 1],[1 2])   % 2*1/s*(s+1)/(s+2)

produces this cascaded transfer function.

Transfer function:

2 s + 2

---------

s^2 + 2 s

If the operands are models of different types, the resulting model type is determined by
precedence rules; see “Rules That Determine Model Type” for more information.

For more information about model arithmetic functions, see “Catalog of Model
Interconnections”.

You can also use the series and parallel functions as substitutes for multiplication
and addition, respectively.



 Interconnecting Linear Models

2-21

Equivalent Ways to Interconnect Systems

Operator Function Resulting Transfer Function

sys1 + sys2 parallel(sys1,sys2) Systems in parallel
sys1 - sys2 parallel(sys1,-sys2) Systems in parallel
sys1 * sys2 series(sys2,sys1) Cascaded systems

Feedback Interconnections

You can use the feedback and lft functions to derive closed-loop models. For example,

sys_f = feedback(tf(1,[1 0]), tf([1 1],[1 2])

computes the closed-loop transfer function from r to y for the feedback loop shown below.
The result is

Transfer function:

    s + 2

-------------

s^2 + 3 s + 1

This figure shows the interconnected system in block diagram format.

Feedback Interconnection

You can use the lft function to create more complicated feedback structures. This
function constructs the linear fractional transformation of two systems. See the reference
page for more information.



2 Building Models

2-22

Converting Between Continuous- and Discrete- Time Systems

In this section...

“Available Commands for Continuous/Discrete Conversion” on page 2-22
“Available Methods for Continuous/Discrete Conversion” on page 2-22
“Digitizing the Discrete DC Motor Model” on page 2-22

Available Commands for Continuous/Discrete Conversion

The commands c2d, d2c, and d2d perform continuous to discrete, discrete to continuous,
and discrete to discrete (resampling) conversions, respectively.

sysd = c2d(sysc,Ts)  % Discretization w/ sample period Ts

sysc = d2c(sysd)     % Equivalent continuous-time model

sysd1= d2d(sysd,Ts)  % Resampling at the period Ts

Available Methods for Continuous/Discrete Conversion

Various discretization/interpolation methods are available, including zero-order hold
(default), first-order hold, Tustin approximation with or without prewarping, and
matched zero-pole. For example,

sysd = c2d(sysc,Ts,'foh')   % Uses first-order hold

sysc = d2c(sysd,'tustin')   % Uses Tustin approximation

Digitizing the Discrete DC Motor Model

You can digitize the DC motor plant using the c2d function and selecting an appropriate
sample time. Choosing the right sample time involves many factors, including the
performance you want to achieve, the fastest time constant in your system, and the speed
at which you expect your controller to run. For this example, choose a time constant of
0.01 second. See “SISO Example: The DC Motor” on page 2-3 for the construction of the
SS object sys_dc.

Ts=0.01;

sysd=c2d(sys_dc,Ts)

 



 Converting Between Continuous- and Discrete- Time Systems

2-23

a = 

                        x1           x2

           x1      0.96079  -0.00027976

           x2     0.006994      0.90484

 

 

b = 

                        u1

           x1     0.019605

           x2  7.1595e-005

 

 

c = 

                        x1           x2

           y1            0            1

 

 

d = 

                        u1

           y1            0

 

Sample time: 0.01

Discrete-time model.

To see the discrete-time zero-pole gain for the digital DC motor, use zpk to convert the
model.

fd=zpk(sysd)

 

Zero/pole/gain:

7.1595e-005 (z+0.9544)

------------------------

 (z-0.9608) (z-0.9049)

 

Sample time: 0.01

You can compare the step responses of sys_dc and sysd by typing

step(sys_dc,sysd)

This figure shows the result.



2 Building Models

2-24

Note the step response match. Continuous and FOH-discretized step responses match for
models without internal delays.



 Reducing Model Order

2-25

Reducing Model Order

In this section...

“Model Order Reduction Commands” on page 2-25
“Techniques for Reducing Model Order” on page 2-25
“Example: Gasifier Model” on page 2-26

Model Order Reduction Commands

You can derive reduced-order SISO and MIMO models with the commands shown in the
following table.

Model Order Reduction
Commands

 

hsvd Compute Hankel singular values of LTI model
balred Reduced-order model approximation
minreal Minimal realization (pole/zero cancellation)
balreal Compute input/output balanced realization
modred State deletion in I/O balanced realization
sminreal Structurally minimal realization

Techniques for Reducing Model Order

To reduce the order of a model, you can perform any of the following actions:

• Eliminate states that are structurally disconnected from the inputs or outputs using
sminreal.

Eliminating structurally disconnected states is a good first step in model reduction
because the process is cheap and does not involve any numerical computation.

• Compute a low-order approximation of your model using balred.
• Eliminate cancelling pole/zero pairs using minreal.



2 Building Models

2-26

Example: Gasifier Model

This example presents a model of a gasifier, a device that converts solid materials into
gases. The original model is nonlinear.

Loading the Model

To load a linearized version of the model, type

load ltiexamples

at the MATLAB prompt; the gasifier example is stored in the variable named gasf. If
you type

size(gasf)

you get in return

State-space model with 4 outputs, 6 inputs, and 25 states.

SISO Model Order Reduction

You can reduce the order of a single I/O pair to understand how the model reduction tools
work before attempting to reduce the full MIMO model as described in “MIMO Model
Order Reduction” on page 2-30.

This example focuses on a single input/output pair of the gasifier, input 5 to output 3.

sys35 = gasf(3,5);

Before attempting model order reduction, inspect the pole and zero locations by typing

pzmap(sys35)

Zoom in near the origin on the resulting plot using the zoom feature or by typing

axis([-0.2 0.05 -0.2 0.2])

The following figure shows the results.



 Reducing Model Order

2-27

Pole-Zero Map of the Gasifier Model (Zoomed In)

Because the model displays near pole-zero cancellations, it is a good candidate for model
reduction.

To find a low-order reduction of this SISO model, perform the following steps:

1 Select an appropriate order for your reduced system by examining the relative
amount of energy per state using a Hankel singular value (HSV) plot. Type the
command

hsvd(sys35)

to create the HSV plot.

Changing to log scale using the right-click menu results in the following plot.



2 Building Models

2-28

Small Hankel singular values indicate that the associated states contribute little to
the I/O behavior. This plot shows that discarding the last 10 states (associated with
the 10 smallest Hankel singular values) has little impact on the approximation error.

2 To remove the last 10 states and create a 15th order approximation, type

rsys35 = balred(sys35,15);

You can type size(rsys35) to see that your reduced system contains only 15
states.

3 Compare the Bode response of the full-order and reduced-order models using the
bode command:

bode(sys35,'b',rsys35,'r--')

This figure shows the result.



 Reducing Model Order

2-29

As the overlap of the curves in the figure shows, the reduced model provides a good
approximation of the original system.

You can try reducing the model order further by repeating this process and removing
more states. Reduce the gasf model to 5th, 10th, and 15th orders all at once by typing
the following command

rsys35 = balred(sys35,[5 10 15]);

Plot a bode diagram of these three reduced systems along with the full order system by
typing

bode(sys35,'b',rsys35,'r--')



2 Building Models

2-30

Observe how the error increases as the order decreases.

MIMO Model Order Reduction

You can approximate MIMO models using the same steps as SISO models as follows:

1 Select an appropriate order for your reduced system by examining the relative
amount of energy per state using a Hankel singular value (HSV) plot.

Type

hsvd(gasf)

to create the HSV plot.



 Reducing Model Order

2-31

Discarding the last 8 states (associated with the 8 smallest Hankel singular values)
should have little impact on the error in the resulting 17th order system.

2 To remove the last 8 states and create a 17th order MIMO system, type

rsys=balred(gasf,17);

You can type size(gasf) to see that your reduced system contains only 17 states.
3 To facilitate visual inspection of the approximation error, use a singular value plot

rather than a MIMO Bode plot. Type

sigma(gasf,'b',gasf-rsys,'r')

to create a singular value plot comparing the original system to the reduction error.



2 Building Models

2-32

The reduction error is small compared to the original system so the reduced order
model provides a good approximation of the original model.

Acknowledgment

MathWorks thanks ALSTOM® Power UK for permitting use of their gasifier model for
this example. This model was issued as part of the ALSTOM Benchmark Challenge on
Gasifier Control. For more details see Dixon, R., (1999), "Advanced Gasifier Control,"
Computing & Control Engineering Journal, IEE, Vol. 10, No. 3, pp. 92–96.



3

Analyzing Models

• “Linear Analysis Using the Linear System Analyzer” on page 3-2
• “Simulate Models with Arbitrary Inputs and Initial Conditions” on page 3-7



3 Analyzing Models

3-2

Linear Analysis Using the Linear System Analyzer

In this example, you learn how to analyze the time- and frequency-domain responses of
one or more linear models using the Linear System Analyzer app.

Before you can perform the analysis, you must have already created linear models in the
MATLAB workspace. For information on how to create a model, see “Basic Models”.

To perform linear analysis:

1 Open the Linear System Analyzer showing one or more models using the following
syntax:

linearSystemAnalyzer(sys1,sys2,...,sysN)

By default, this syntax opens a step response plot of your models, as shown in the
following figure.



 Linear Analysis Using the Linear System Analyzer

3-3

Note: Alternatively, open Linear System Analyzer from the Apps tab in the
MATLAB desktop. When you do so, select File > Import to load linear models from
the MATLAB workspace or a MAT file.

2 Add more plots to the Linear System Analyzer.

a Select Edit > Plot Configurations.
b In the Plot Configurations dialog box, select the number of plots to open.



3 Analyzing Models

3-4



 Linear Analysis Using the Linear System Analyzer

3-5

3 To view a different type of response on a plot, right-click and select a plot type.

4 Analyze system performance. For example, you can analyze the peak response in the
Bode plot and settling time in the step response plot.

a Right-click to select performance characteristics.
b Click on the dot that appears to view the characteristic value.



3 Analyzing Models

3-6

See Also
linearSystemAnalyzer | lsim

Related Examples
• “Joint Time- and Frequency-Domain Analysis”

More About
• “Linear System Analyzer Overview”



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-7

Simulate Models with Arbitrary Inputs and Initial Conditions

In this section...

“What is the Linear Simulation Tool?” on page 3-7
“Opening the Linear Simulation Tool” on page 3-7
“Working with the Linear Simulation Tool” on page 3-8
“Importing Input Signals” on page 3-10
“Example: Loading Inputs from a Microsoft Excel Spreadsheet” on page 3-12
“Example: Importing Inputs from the Workspace” on page 3-13
“Designing Input Signals” on page 3-17
“Specifying Initial Conditions” on page 3-19

What is the Linear Simulation Tool?

You can use the Linear Simulation Tool to simulate linear models with arbitrary input
signals and initial conditions.

The Linear Simulation Tool lets you do the following:

• Import input signals from the MATLAB workspace.
• Import input signals from a MAT-file, Microsoft® Excel® spreadsheet, ASCII flat-file,

comma-separated variable file (CSV), or text file.
• Generate arbitrary input signals in the form of a sine wave, square wave, step

function, or white noise.
• Specify initial states for state-space models.

Default initial states are zero.

Opening the Linear Simulation Tool

To open the Linear Simulation Tool, do one of the following:

• In the Linear System Analyzer, right-click the plot area and select Plot Types >
Linear Simulation.

• Use the lsim function at the MATLAB prompt:



3 Analyzing Models

3-8

lsim(modelname)

• In the MATLAB Figure window, right-click a response plot and select Input data.

Working with the Linear Simulation Tool

The Linear Simulation Tool contains two tabs, Input signals and Initial states.

After opening the Linear Simulation Tool (as described in “Opening the Linear
Simulation Tool” on page 3-7), follow these steps to simulate your model:

1 Click the Input signals tab, if it is not displayed.

2 In the Timing area, specify the simulation time vector by doing one of the following:

• Import the time vector by clicking Import time.
• Enter the end time and the time interval in seconds. The start time is set to 0

seconds.



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-9

3 Specify the input signal by doing one of the following:

• Click Import signal to import it from the MATLAB workspace or a file. For more
information, see “Importing Input Signals” on page 3-10.

• Click Design signal to create your own inputs. For more information, see
“Designing Input Signals” on page 3-17.

4 If you have a state-space model and want to specify initial conditions, click the
Initial states tab. By default, all initial states are set to zero.

You can either enter state values in the Initial value column, or import values by
clicking Import state vector. For more information about entering initial states,
see “Specifying Initial Conditions” on page 3-19.

5 For a continuous model, select one of the following interpolation methods in the
Interpolation method list to be used by the simulation solver:

• Zero order hold



3 Analyzing Models

3-10

• First order hold (linear interpolation)
• Automatic (Linear Simulation Tool selects first order hold or zero order hold

automatically, based on the smoothness of the input)

Note The interpolation method is not used when simulating discrete models.

6 Click Simulate.

Importing Input Signals

You can import input signals from the MATLAB workspace after opening the Linear
Simulation Tool (see “Opening the Linear Simulation Tool” on page 3-7). You can
also import inputs from a MAT-file, Microsoft Excel spreadsheet, ASCII flat-file, comma-
separated variable file (CSV), or text file.

For information about creating your own inputs, see “Designing Input Signals” on page
3-17. For an overview of working with the Linear Simulation Tool, see “Working with
the Linear Simulation Tool” on page 3-8.

To import one or more input signals:

1 In the Linear Simulation Tool, click the Input signals tab, if it is not displayed.
2 Specify the simulation time in the Timing area.
3 Select one or more rows for the input channels you want to import. The following

figure shows an example with two selected channels.



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-11

4 Click Import signal to open the Data Import dialog box. The following figure shows
an example of the Data Import dialog box.



3 Analyzing Models

3-12

5 In the Import from list, select the source of the input signals. It can be one of the
following:

• Workspace

• MAT file

• XLS file

• CSV file

• ASCII file

6 Select the data you want to import. The Data Import dialog box contains different
options depending on which source format you selected.

7 Click Import.

For an example of importing input signals, see the following:

• “Example: Loading Inputs from a Microsoft Excel Spreadsheet” on page 3-12
• “Example: Importing Inputs from the Workspace” on page 3-13

Example: Loading Inputs from a Microsoft Excel Spreadsheet

To load inputs from a Microsoft Excel (XLS) spreadsheet:

1 In the Linear Simulation Tool, click Import signal in the Input signals tab to open
the Data Import dialog box.

2 Select XLS file in the Import from list.
3 Click Browse.
4 Select the file you want to import and click Open. This populates the Data Import

dialog box with the data from the Microsoft Excel spreadsheet.



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-13

Example: Importing Inputs from the Workspace

To load an input signal from the MATLAB workspace:

1 Enter this code to open a response plot with a second-order system:

s=tf('s');

ss=(s+2)/(s^2+3*s+2);

lsim(ss,randn(100,1),1:100);

2 Right-click the plot background and select Input data.



3 Analyzing Models

3-14

This opens the Linear Simulation Tool with default input data.



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-15

3 Create an input signal for your system in the MATLAB Command Window, such as
the following:

new_signal=[-3*ones(1,20) 2*ones(1,30) 0.5*ones(1,50)]';

4 In the Linear Simulation Tool, click Import signal.
5 In the Data Import dialog box, click, Assign columns to assign the first column of

the input signal to the selected channel.



3 Analyzing Models

3-16

6 Click Import. This imports the new signal into the Linear Simulation Tool.



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-17

7 Click Simulate to see the response of your second-order system to the imported
signal.

Designing Input Signals

You can generate arbitrary input signals in the form of a sine wave, square wave, step
function, or white noise after opening the Linear Simulation Tool (see “Opening the
Linear Simulation Tool” on page 3-7).

For information about importing inputs from the MATLAB workspace or from a file, see
“Importing Input Signals” on page 3-10. For an overview of working with the Linear
Simulation Tool, see “Working with the Linear Simulation Tool” on page 3-8.

To design one or more input signals:

1 In the Linear Simulation Tool, click the Input signals tab (if it is not displayed).
2 Specify the simulation time in the Timing area. The time interval (in seconds) is

used to evaluate the input signal you design in later steps of this procedure.



3 Analyzing Models

3-18

3 Select one or more rows for the signal channels you want to design. The following
figure shows an example with two selected channels.

4 Click Design signal to open the Signal Designer dialog box. The following figure
shows an example of the Signal Designer dialog box.



 Simulate Models with Arbitrary Inputs and Initial Conditions

3-19

5 In the Signal type list, select the type of signal you want to create. It can be one of
the following:

• Sine wave

• Square wave

• Step function

• White noise

6 Specify the signal characteristics. The Signal Designer dialog box contains different
options depending on which signal type you selected.

7 Click Insert. This brings the new signal into the Linear Simulation Tool.
8 Click Simulate in the Linear Simulation Tool to view the system response.

Specifying Initial Conditions

If your system is in state-space form, you can enter or import initial states after opening
the Linear Simulation Tool (see “Opening the Linear Simulation Tool” on page 3-7).

For an overview of working with the Linear Simulation Tool, see “Working with the
Linear Simulation Tool” on page 3-8.

You can also import initial states from the MATLAB workspace.

To import one or more initial states:



3 Analyzing Models

3-20

1 In the Linear Simulation Tool, click the Initial states tab (if it is not already
displayed).

2 In the Selected system list, select the system for which you want to specify initial
conditions.

3 You can either enter state values in the Initial value column, or import values
from the MATLAB workspace by clicking Import state vector. The following figure
shows an example of the import window:

Note For n-states, your initial-condition vector must have n entries.
4 After specifying the initial states, click Simulate in the Linear Simulation Tool to

view the system response.

See Also
linearSystemAnalyzer | lsim

Related Examples
• “Joint Time- and Frequency-Domain Analysis”
• “Response from Initial Conditions”



4

Designing Compensators

• “Choosing a PID Controller Design Tool” on page 4-2
• “Designing PID Controllers with the PID Tuner” on page 4-3
• “Analyze Design in PID Tuner” on page 4-6
• “PID Controller Design for Fast Reference Tracking” on page 4-11
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID

Tuner)” on page 4-21
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at

Command Line” on page 4-33
• “Interactively Estimate Plant Parameters from Response Data” on page 4-40
• “Preprocessing Data” on page 4-51
• “PID Tuning Algorithm” on page 4-56
• “System Identification for PID Control” on page 4-58
• “Input/Output Data for Identification” on page 4-62
• “Choosing Identified Plant Structure” on page 4-64
• “SISO Design Tool” on page 4-74
• “Bode Diagram Design” on page 4-110
• “Root Locus Design” on page 4-136
• “Nichols Plot Design” on page 4-157
• “Automated Tuning Design” on page 4-167
• “Multi-Loop Compensator Design” on page 4-173
• “Control Design Analysis of Multiple Models” on page 4-184
• “Functions for Compensator Design” on page 4-198
• “State Estimation Using Time-Varying Kalman Filter” on page 4-223
• “Kalman Filter Design” on page 4-237



4 Designing Compensators

4-2

Choosing a PID Controller Design Tool

Control System Toolbox software gives you several tools for designing PID controllers.

Tool When to use

PID Tuner • Automatic, interactive tuning of SISO
PID controller in the feed-forward path
of single-loop, unity-feedback control
configuration.

sysCr y
+

-

u

• Interactive fitting of a plant model
from measured SISO response data and
automatic tuning of PID controller for
the resulting model (requires System
Identification Toolbox™ software).

SISO Design Tool Tuning PID controllers in any other loop
configuration.

Command-line PID tuning Programmatic tuning of SISO PID
controllers.



 Designing PID Controllers with the PID Tuner

4-3

Designing PID Controllers with the PID Tuner

In this section...

“PID Tuner Overview” on page 4-3
“PID Controller Type” on page 4-4
“PID Controller Form” on page 4-5

PID Tuner Overview

Use the PID Tuner to interactively design a SISO PID controller in the feed-forward path
of single-loop, unity-feedback control configuration.

sysCr y
+

-

u

The PID Tuner automatically designs a controller for your plant. You specify the
controller type (P, I, PI, PD, PDF, PID, PIDF) and form (parallel or standard). You can
analyze the design using a variety of response plots, and interactively adjust the design
to meet your performance requirements.

To launch the PID Tuner, use the pidTuner command:

pidTuner(sys,type)

where sys is a linear model of the plant you want to control, and type is a string
indicating the controller type to design.

Alternatively, enter

pidTuner(sys,Cbase)

where Cbase is a baseline controller, allowing you to compare the performance of the
designed controller to the performance of Cbase.

For more information about sys and Cbase, see the pidTuner reference page.

Note: You can also open PID Tuner from the MATLAB desktop, in the Apps tab. When
you do so, use the Plant menu in PID Tuner to specify your plant model.



4 Designing Compensators

4-4

PID Controller Type

The PID Tuner can tune up to seven types of controllers. To select the controller type, use
one of these methods:

• Provide the type argument to the launch command pidTuner.
• Provide a baseline controller Cbase to the launch command pidTuner. The PID

Tuner designs a controller of the same type as Cbase.
• In PID Tuner, use the Type menu to change controller types.

type

input to
pidTuner

Entry in
Type menu

Controller Type Continuous-time
Controller Formula
(parallel form)

Discrete-time Controller
Formula (parallel form,
ForwardEuler integrator
formulas)

'p' P Proportional only Kp Kp

'i' I Integral only K

s

i
K

T

z
i

s

-1

'pi' PI Proportional and
integral K

K

s
p

i
+ K K

T

z
p i

s
+

-1

'pd' PD Proportional and
derivative

K K sp d+

K K
z

T
p d

s

+

-1

'pdf' PDF Proportional and
derivative with first-
order filter on derivative
term

K
K s

T s
p

d

f

+

+1
K K

T
T

z

p d

f
s

+

+

-

1

1

'pid' PID Proportional, integral,
and derivative K

K

s
K sp

i
d+ + K K

T

z
K

z

T
p i

s
d

s

+

-

+

-

1

1

'pidf' PIDF Proportional, integral,
and derivative with
first-order filter on
derivative term

K
K

s

K s

T s
p

i d

f

+ +

+1

K K
T

z
K

T
T

z

p i
s

d

f
s

+

-

+

+

-

1

1

1

If sys is a discrete-time model with sample time Ts, the PID Tuner designs a discrete-
time pid controller using the ForwardEuler discrete integrator formula. To design



 Designing PID Controllers with the PID Tuner

4-5

a controller that has different discrete integrator formulas, use one of the following
methods:

• Provide a discrete-time baseline controller Cbase to the launch command pidTuner.
The PID Tuner designs a controller that has the same discrete integrator formulas as
Cbase.

• After launching the PID Tuner, click Options to open the Controller Options dialog
box. Select discrete integrator formulas from the Integral Formula and Derivative
Formula menus.

For more information about discrete integrator formulas, see the pid and pidstd
reference pages.

PID Controller Form

When you use the type input to launch the PID Tuner, the PID Tuner designs a
controller in parallel form. To design a controller in standard form, use one of the
following methods:

• Provide a standard-form baseline controller Cbase to the launch command pidTuner.
The PID Tuner designs a controller of the same form as Cbase.

• Use the Form menu to change controller form after launching the PID Tuner.

For more information about parallel and standard controller forms, see the pid and
pidstd reference pages.

Related Examples
• “PID Controller Design for Fast Reference Tracking” on page 4-11
• “Analyze Design in PID Tuner” on page 4-6



4 Designing Compensators

4-6

Analyze Design in PID Tuner

In this section...

“Plot System Responses” on page 4-6
“View Numeric Values of System Characteristics” on page 4-8
“Refine the Design” on page 4-9

Plot System Responses

To determine whether the compensator design meets your requirements, you can analyze
the system response using the response plots. In the PID Tuner tab, select a response
plot from the Add Plot menu. The Add Plot menu also lets you choose from several step
plots (time-domain response) or Bode plots (frequency-domain response).



 Analyze Design in PID Tuner

4-7

The PID Tuner computes the responses based upon the following single-loop control
architecture:

PID

G y
+
-

r
C

Plant

d1

+

+

d2

+

+

u

The following table summarizes the available responses.



4 Designing Compensators

4-8

Response Plotted System Description

Plant G Shows the plant response. Use
to examine plant dynamics.

Open-loop CG Shows response of the open-loop
controller-plant system. Use for
frequency-domain design.
Use when your design
specifications include robustness
criteria such as open-loop gain
margin and phase margin.

Reference tracking CG

CG1 +

 (from r to y)
Shows the closed-loop system
response to a step change in
setpoint. Use when your design
specifications include setpoint
tracking.

Controller effort C

CG1 +

 (from r to u)
Shows the closed-loop controller
output response to a step change
in setpoint. Use when your
design is limited by practical
constraints, such as controller
saturation.

Input disturbance

rejection
G

CG1 +

 (from d1 to y)
Shows the closed-loop system
response to load disturbance (a
step disturbance at the plant
input). Use when your design
specifications include input
disturbance rejection.

Output disturbance

rejection
1

1 + CG
 (from d2 to y)

Shows the closed-loop system
response to a step disturbance
at plant output. Use when you
want to analyze sensitivity to
measurement noise.

View Numeric Values of System Characteristics

You can view the values for system characteristics, such as peak response and gain
margin, either:



 Analyze Design in PID Tuner

4-9

• Directly on the response plot — Use the right-click menu to add characteristics, which
appear as blue markers. Then, left-click the marker to display the corresponding data
panel.

• In the Performance and robustness table — To display this table, click  Show
Parameters.

Refine the Design

If the response of the initial controller design does not meet your requirements, you
can interactively adjust the design. The PID Tuner gives you two Domain options for
refining the controller design:

• Time domain (default) — Use the Response Time slider to make the closed-loop
response of the control system faster or slower. Use the Transient Behavior slider



4 Designing Compensators

4-10

to make the controller more aggressive at disturbance rejection or more robust
against plant uncertainty.

• Frequency — Use the Bandwidth slider to make the closed-loop response of the
control system faster or slower (the response time is 2/wc, where wc is the bandwidth).
Use the Phase Margin slider to make the controller more aggressive at disturbance
rejection or more robust against plant uncertainty.

In both modes, there is a trade-off between reference tracking and disturbance rejection
performance. For an example that shows how to use the sliders to adjust this trade-off,
see “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID
Tuner)” on page 4-21.

Tip To revert to the initial controller design after moving the sliders, click  Reset
Design.

Related Examples
• “PID Controller Design for Fast Reference Tracking” on page 4-11



 PID Controller Design for Fast Reference Tracking

4-11

PID Controller Design for Fast Reference Tracking

This example shows how to use the PID Tuner to design a controller for the plant:

sys

s

=

+

1

1
3

( )
.

The design requirements are for the closed loop system to track a reference input with a
rise time less than 1.5 s, and settling time less than 6 s.

1 Create the plant model and open the PID Tuner to design a PI controller for a first
pass design.

sys = zpk([],[-1 -1 -1],1); 

pidTuner(sys,'pi')



4 Designing Compensators

4-12

When you open the PID Tuner, it automatically designs a controller of the type you
specify (here, PI). The controller is designed for a balance between performance
(response time) and robustness (stability margins). The PID Tuner displays the
closed-loop step response of the system with the designed controller.

Tip You can also open PID Tuner from the MATLAB desktop, in the Apps tab. When
you do so, use the Plant menu in PID Tuner to specify your plant model.

2 Examine the reference tracking rise time and settling time.



 PID Controller Design for Fast Reference Tracking

4-13

Right-click on the plot and select Characteristics > Rise Time to mark the
rise time as a blue dot on the plot. Select Characteristics > Settling Time to
mark the settling time. To see tool-tips with numerical values, click each of the blue
dots.

The PID Tuner’s initial PI controller design provides a rise time of 2.35 s and settling
time of 10.7 s. Both results are slower than the design requirements.

Note: To display the performance metrics in a table instead of in tool-tips on the plot,
click Show parameters. This action opens a display containing performance and
robustness metrics and the tuned controller gains.

3 Slide the Response time slider to the right to try to improve the loop performance.
The response plot automatically updates with the new design.



4 Designing Compensators

4-14

Moving the Response time slider far enough to meet the rise time requirement
of less than 1.5 s results in more oscillation. Additionally, the parameters display
shows that the new response has an unacceptably long settling time.



 PID Controller Design for Fast Reference Tracking

4-15

To achieve the faster response speed, the algorithm must sacrifice stability.
4 Change the controller type to improve the response.

Adding derivative action to the controller gives the PID Tuner more freedom to
achieve adequate phase margin with the desired response speed.

In the Type menu, select PIDF. The PID Tuner designs a new PIDF controller. (See
“PID Controller Type” on page 4-4 for more information about available controller
types.)



4 Designing Compensators

4-16

The rise time and settling time now meet the design requirements. You can use the
Response time slider to make further adjustments to the response. To revert to the
default automated tuning result, click Reset Design.

Note: To adjust the closed-loop bandwidth instead of the response time, select
Frequency domain from the Design mode menu . The bandwidth is inversely
proportional to the response time.

5 Analyze other system responses, if appropriate.

To analyze other system responses, click Add Plot. Select the system response you
want to analyze.



 PID Controller Design for Fast Reference Tracking

4-17

For example, to observe the closed-loop step response to disturbance at the plant
input, in the Step section of the Add Plot menu, select Input disturbance
rejection. The disturbance rejection response appears in a new figure.



4 Designing Compensators

4-18

See “Analyze Design in PID Tuner” on page 4-6 for more information about available
response plots.

Tip Use the options in the View tab to change how PID Tuner displays multiple
plots.

6 Export your controller design to the MATLAB workspace.

To export your final controller design to the MATLAB workspace, click  Export.
The PID Tuner exports the controller as a

• pid controller object, if the Form is Parallel
• pidstd controller object, if the Form is Standard

Alternatively, you can export a model using the right-click menu in the Data
Browser. To do so, click the Data Browser tab.



 PID Controller Design for Fast Reference Tracking

4-19

Then, right-click the model and select Export.



4 Designing Compensators

4-20

Related Examples
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID

Tuner)” on page 4-21
• “Analyze Design in PID Tuner”



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-21

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection (PID Tuner)

This example shows how to tune a PID controller to reduce overshoot in reference
tracking or to improve rejection of a disturbance at the plant input. Using the PID Tuner
app, the example illustrates the tradeoff between reference tracking and disturbance-
rejection performance in PI and PID control systems.

Consider the control system of the following illustration.

The plant in this example is:

Plant

s s

=

+

0 3

0 1
2

.

.

.

Reference tracking is the response at y to signals at r. Disturbance rejection is a measure
of the suppression at y of signals at d. When you use PID Tuner to tune the controller,
you can adjust the design to favor reference tracking or disturbance rejection as your
application requires.

Design Initial PI Controller

Having an initial controller design provides a baseline against which you can compare
results as you tune a PI controller. Create an initial PI controller design for the plant
using PID tuning command pidtune.

G = tf(0.3,[1,0.1,0]);    % plant model



4 Designing Compensators

4-22

C = pidtune(G,'pi');

Use the initial controller design to open the PID Tuner.

pidTuner(G,C)

Add a step response plot of the input disturbance rejection. Select elect Add Plot >
Input Disturbance Rejection.



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-23

PID Tuner tiles the disturbance-rejection plot side by side with the reference-tracking
plot.



4 Designing Compensators

4-24

Tip Use the options in the View tab to change how PID Tuner displays multiple plots.

By default, for a given bandwidth and phase margin, PID Tuner tunes the controller to
achieve a balance between reference tracking and disturbance rejection. In this case, the
controller yields some overshoot in the reference-tracking response. The controller also
suppresses the input disturbance with a longer settling time than the reference tracking,
after an initial peak.

Adjust Transient Behavior

Depending on your application, you might want to alter the balance between reference
tracking and disturbance rejection to favor one or the other. For a PI controller, you can
alter this balance using the Transient Behavior slider. Move the slider to the left to
improve the disturbance rejection. The responses with the initial controller design are
now displayed as the Baseline response (dotted line).



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-25

Lowering the transient-behavior coefficient to 0.45 speeds up disturbance rejection, but
also increases overshoot in the reference-tracking response. 

Tip Right-click on the reference-tracking plot and select Characteristics > Peak
Response to obtain a numerical value for the overshoot.

Move the Transient behavior slider to the right until the overshoot in the reference-
tracking response is minimized.



4 Designing Compensators

4-26

Increasing the transient-behavior coefficient to 0.70 nearly eliminates the overshoot, but
results in extremely sluggish disturbance rejection. You can try moving the Transient
behavior slider until you find a balance between reference tracking and disturbance
rejection that is suitable for your application. The effect that changing the slider has on
the balance depends on the plant model. For some plant models, the effect is not as large
as shown in this example.

Change PID Tuning Design Focus

So far, the response time of the control system has remained fixed while you have
changed the transient-behavior coefficient. These operations are equivalent to fixing the



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-27

bandwidth and varying the target minimum phase margin of the system. If you want
to fix both the bandwidth and target phase margin, you can still change the balance
between reference tracking and disturbance rejection. To tune a controller that favors
either disturbance rejection or reference tracking, you change the design focus of the PID
tuning algorithm.

Changing the PID Tuner design focus is more effective the more tunable parameters
there are in the control system. Therefore, it does not have much effect when used with
a PI controller. To see its effect, change the controller type to PIDF. In the Type menu,
select PIDF.

PID Tuner automatically designs a new controller. Move the Transient Behavior slider
to set the coefficient back to 0.6.



4 Designing Compensators

4-28

As in the PI case, the initial PIDF design balances reference tracking and disturbance
rejection. Also as in the PI case, the controller yields some overshoot in the reference-
tracking response, and suppresses the input disturbance with a longer settling time. (The
Baseline response curve still shows the original PI controller, which yields responses
that are similar to the balanced PIDF controller responses.)

Change the PID Tuner design focus to favor reference tracking without changing the

response time or the transient-behavior coefficient. To do so, click  Options, and in
the Focus menu, select Reference tracking.



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-29

PID Tuner automatically retunes the controller coefficients with a focus on reference-
tracking performance.



4 Designing Compensators

4-30

The PIDF controller tuned with a focus reference-tracking is displayed as Tuned
response (solid line). The plots show that the resulting controller tracks the reference
input with considerably less overshoot and a faster settling time than the balanced
controller design. However, the design yields much poorer disturbance rejection.

Change the design focus to favor disturbance rejection. In the  Options dialog box, in
the Focus menu, select Input disturbance rejection.



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)

4-31

This controller design yields improved disturbance rejection, but results in some
increased overshoot in the reference-tracking response.

When you use design focus option, you can still adjust the Transient Behavior slider
for further fine-tuning of the balance between the two measures of performance. Use
the design focus and the sliders together to achieve the performance balance that best
meets your design requirements. The effect of this fine tuning on system performance
depends strongly on the properties of your plant. For some plants, moving the Transient
Behavior slider or changing the Focus option has little or no effect.

Related Examples
• “PID Controller Design for Fast Reference Tracking” on page 4-11
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at

Command Line” on page 4-33



4 Designing Compensators

4-32

More About
• “PID Tuning Algorithm” on page 4-56



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at Command Line

4-33

Tune PID Controller to Favor Reference Tracking or Disturbance
Rejection at Command Line

This example shows how to use command-line PID tuning options to reduce overshoot in
reference tracking or to improve rejection of a disturbance at the plant input. Using the
pidtune command, the example illustrates the tradeoff between reference tracking and
disturbance-rejection performance in PI and PID control systems.

Consider the control system of the following illustration.

Setpoint tracking is the response at y to signals at r. Input disturbance rejection is the
suppression at y of signals at d.

Create a model of the plant, which for this example is given by:

G = tf(0.3,[1 0.1 0]);

Design a PI controller for this plant, using a bandwidth of 0.03 rad/s.

wc = 0.03;

[C1,info] = pidtune(G,'pi',wc);

Examine the step-reference tracking and step-disturbance rejection of the control system
using the default controller. The disturbance response from d to y is equivalent to the
response of a closed loop given by feedback(G,C1).

T1 = feedback(G*C1,1);

GS1 = feedback(G,C1);



4 Designing Compensators

4-34

subplot(2,1,1);

stepplot(T1)

title('Reference Tracking')

subplot(2,1,2);

stepplot(GS1)

title('Disturbance Rejection')

By default, for a given bandwidth, pidtune tunes the controller to achieve a balance
between reference tracking and disturbance rejection. In this case, the controller yields
some overshoot in the reference-tracking response. The controller also suppresses the
input disturbance with a somewhat longer settling time than the reference tracking,
after an initial peak.



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at Command Line

4-35

Depending on your application, you might want to alter the balance between reference
tracking and disturbance rejection to favor one or the other. For a PI controller, you
can alter this balance by changing the phase margin of the tuned system. The default
controller returned by pidtune yields a phase margin of 60°.

info.PhaseMargin

ans =

   60.0000

Design controllers for phase margins of 45° and 70° with the same bandwidth, and
compare the resulting reference tracking and disturbance rejection.

opts2 = pidtuneOptions('PhaseMargin',45);

C2 = pidtune(G,'pi',wc,opts2);

T2 = feedback(G*C2,1);

GS2 = feedback(G,C2);

opts3 = pidtuneOptions('PhaseMargin',70);

C3 = pidtune(G,'pi',wc,opts3);

T3 = feedback(G*C3,1);

GS3 = feedback(G,C3);

subplot(2,1,1);

stepplot(T1,T2,T3)

legend('PM = 60','PM = 45','PM = 70')

title('Reference Tracking')

subplot(2,1,2);

stepplot(GS1,GS2,GS3)

title('Disturbance Rejection')



4 Designing Compensators

4-36

Lowering the phase margin to 45° speeds up disturbance rejection, but also increases
overshoot in the reference tracking response. Increasing the phase margin to 70°
eliminates the overshoot completely, but results in extremely sluggish disturbance
rejection. You can try different phase margin values until you find one that balances
reference tracking and disturbance rejection suitably for your application. The effect of
the phase margin on this balance depends on the plant model. For some plant models,
the effect is not as large as shown in this example.

If you want to fix both the bandwidth and phase margin of your control system, you can
still change the balance between reference tracking and disturbance rejection using the
DesignFocus option of pidtune. You can set DesignFocus to either 'disturbance-
rejection' or 'reference-tracking' to tune a controller that favors one or the
other.



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at Command Line

4-37

The DesignFocus option is more effective for a control system with more tunable
parameters. Therefore, it does not have much effect when used with a PI controller. To
see its effect, design a PIDF controller for the same bandwidth and the default phase
margin (60°) using each of the DesignFocus values. Compare the results.

opts4 = pidtuneOptions('DesignFocus','balanced');   % default focus

C4 = pidtune(G,'pidf',wc,opts4);

T4 = feedback(G*C4,1);

GS4 = feedback(G,C4);

opts5 = pidtuneOptions('DesignFocus','disturbance-rejection');

C5 = pidtune(G,'pidf',wc,opts5);

T5 = feedback(G*C5,1);

GS5 = feedback(G,C5);

opts6 = pidtuneOptions('DesignFocus','reference-tracking');

C6 = pidtune(G,'pidf',wc,opts6);

T6 = feedback(G*C6,1);

GS6 = feedback(G,C6);

subplot(2,1,1);

stepplot(T4,T5,T6)

legend('Balanced','Rejection','Tracking')

title('Reference Tracking')

subplot(2,1,2);

stepplot(GS4,GS5,GS6)

title('Disturbance Rejection')



4 Designing Compensators

4-38

When you use the DesignFocus option to favor reference tracking or disturbance
rejection in the tuned control system, you can still adjust phase margin for further fine
tuning of the balance between these two measures of performance. Use DesignFocus
and PhaseMargin together to achieve the performance balance that best meets your
design requirements.

The effect of both options on system performance depends strongly on the properties of
your plant. For some plants, changing the PhaseMargin or DesignFocus options has
little or no effect.

Related Examples
• “PID Controller Design at the Command Line”



 Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at Command Line

4-39

• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID
Tuner)”

More About
• “PID Tuning Algorithm” on page 4-56



4 Designing Compensators

4-40

Interactively Estimate Plant Parameters from Response Data

This example shows how to use PID Tuner to fit a linear model to measured SISO
response data.

If you have System Identification Toolbox software, you can use the PID Tuner to
estimate the parameters of a linear plant model based on time-domain response data
measured from your system. PID Tuner then tunes a PID controller for the resulting
estimated model. PID Tuner gives you several techniques to graphically, manually, or
automatically adjust the estimated model to match your response data. This example
illustrates some of those techniques.

Import Response Data for Identification

1 Open the PID Tuner.

pidTuner(tf(1),'PI')

Load measured response data into the MATLAB workspace.

load PIDPlantMeasuredIOData

When you import response data, PID Tuner assumes that your measured data
represents a plant connected to the PID controller in a negative-feedback loop. In
other words, PID Tuner assumes the following structure for your system. PID Tuner
assumes that you injected a step signal at u and measured the system response at y,
as shown.

The sample data file for this example, load PIDPlantMeasuredIOData.mat,
contains three variables, each of which is a 501-by-1 array. inputu is the unit
step function injected at u to obtain the response data. outputy, is the measured
response of the system at y. The time vector t, runs from 0 to 50 s with a 0.1 s
sample time. Comparing inputu to t shows that the step occurs at t = 5 s.



 Interactively Estimate Plant Parameters from Response Data

4-41

Tip You can import response data stored as a numeric array (as in this example), a
timeseries object, or an iddata object.

2 In the PID Tuner, in the Plant menu, select Identify New Plant.

3
In the Plant Identification tab, click  Get I/O data and select Step Response.
This action opens the Import Step Response dialog box.

Enter information about the response data. The output signal is the measured
system response, outputy. The input step signal is parametrized as shown in the



4 Designing Compensators

4-42

diagram in the dialog box. Here, enter 5 for the onset time, and 0.1 for sample time.

Then, click  Import.

The Plant Identification tab opens, displaying the response data and the response
of an initial estimated plant.



 Interactively Estimate Plant Parameters from Response Data

4-43

Preprocess Data

Depending on the quality and features of your response data, you might want to perform
some preprocessing on the data to improve the estimated plant results. PID Tuner
gives you several options for preprocessing response data, such as removing offsets,
filtering, or extracting on a subset of the data. In this example, the response data has
an offset. It is important for good identification results to remove data offsets. Use the
Preprocess menu to do so. (For information about other data preprocessing options, see
“Preprocessing Data” on page 4-51.)



4 Designing Compensators

4-44

1
In the Plant Identification tab, click  Preprocess and select Remove
Offset. The Remove Offset tab opens, displaying time plots of the response data
and corresponding input signal.

2 Select Remove offset from signal and choose the response, Output (y). In the
Offset to remove text box you can opt to remove the signal initial value or signal
mean, or enter a numerical value. For this example, enter the value 2. The plot
updates with an additional trace showing the signal with the offset applied.

3
Click  Update to save the change to the signal. Click  Close Remove Offset
to return to the Plant Identification tab.

PID Tuner automatically adjusts the plant parameters to create a new initial guess
for the plant based on the preprocessed response signal.



 Interactively Estimate Plant Parameters from Response Data

4-45

Adjust Plant Structure and Parameters

PID Tuner allows you to specify a plant structure, such as One Pole, Underdamped
Pair, or State-Space Model. In the Structure menu, choose the plant structure that
best matches your response. You can also add a transfer delay, a zero, or an integrator
to your plant. For this example, the one-pole structure gives the qualitatively correct
response. You can make further adjustments to the plant structure and parameter values
to make the estimated system’s response a better match to the measured response data.

PID Tuner gives you several ways to adjust the plant parameters:

• Graphically adjust the estimated system’s response by dragging the adjustors on the
plot. In this example, drag the red x to adjust the estimated plant time constant. PID
Tuner recalculates system parameters as you do so. As you change the estimated
system’s response, it becomes apparent that there is some time delay between the
application of the step input at t = 5 s, and the response of the system to that step
input.



4 Designing Compensators

4-46

In the Plant Structure section of the tab, check Delay to add a transport delay to
the estimated plant model. A vertical line appears on the plot, indicating the current
value of the delay. Drag the line left or right to change the delay, and make further
adjustments to the system response by dragging the red x.

• Adjust the numerical values of system parameters such as gains, time constants, and

time delays. To numerically adjust the values of system parameters, click  Edit
Parameters.

Suppose that in this example you know from an independent measurement that the
transport delay in your system is 1.5 s. In the Plant Parameters dialog box, enter
1.5 for τ. Check Fix to fix the parameter value. When you check Fix for a parameter,
neither graphical nor automatic adjustments to the estimated plant model affect that
parameter value.



 Interactively Estimate Plant Parameters from Response Data

4-47

• Automatically optimize the system parameters to match the measured response data.

Click Auto Estimate to update the estimated system parameters using the
current values as an initial guess.

You can continue to iterate using any of these methods to adjust plant structure and
parameter values until the estimated system’s response adequately matches the
measured response.

Save Plant and Tune PID Controller

When you are satisfied with the fit, click  Save Plant. Doing so saves the estimated
plant, Plant1, to the PID Tuner workspace. Doing so also selects the Step Plot:
Reference Tracking figure and returns you to the PID Tuner tab. The PID Tuner
automatically designs a PI controller for Plant1, and displays a response plot for the
new closed-loop system. The Plant menu reflects that Plant1 is selected for the current
controller design.



4 Designing Compensators

4-48

Tip To examine variables stored in the PID Tuner workspace, open the Data Browser.



 Interactively Estimate Plant Parameters from Response Data

4-49

You can now use the PID Tuner tools to refine the controller design for the estimated
plant and examine tuned system responses.

You can also export the identified plant from the PID Tuner workspace to the MATLAB

workspace for further analysis. In the PID Tuner tab, click  Export. Check the
plant model you want to export to the MATLAB workspace. For this example, export
Plant1, the plant you identified from response data. You can also export the tuned PID

controller. Click  OK. The models you selected are saved to the MATLAB workspace.

Identified plant models are saved as identified LTI models, such as idproc or idss.

Tip Alternatively, right-click a plant in the Data Browser to select it for tuning or
export it to the MATLAB workspace.



4 Designing Compensators

4-50

More About
• “Input/Output Data for Identification” on page 4-62
• “Preprocessing Data” on page 4-51
• “Choosing Identified Plant Structure” on page 4-64
• “System Identification for PID Control” on page 4-58



 Preprocessing Data

4-51

Preprocessing Data

In this section...

“Ways to Preprocess Data” on page 4-51
“Remove Offset” on page 4-52
“Scale Data” on page 4-52
“Extract Data” on page 4-53
“Filter Data” on page 4-53
“Resample Data” on page 4-54
“Replace Data” on page 4-54

Ways to Preprocess Data

You can preprocess plant data before you use it for estimation. After you import I/O data,
on the Plant Identification tab, use the Preprocess menu to select a preprocessing
operation.



4 Designing Compensators

4-52

• “Remove Offset” on page 4-52 — Remove mean values, a constant value, or an
initial value from the data.

• “Scale Data” on page 4-52 — Scale data by a constant value, signal maximum
value, or signal initial value.

• “Extract Data” on page 4-53 — Exclude a portion of the data from the estimation
process. You can select the data to exclude graphically or by specifying a start time
and end time.

• “Filter Data” on page 4-53 — Smooth data using a low-pass, high-pass, or band-
pass filter.

• “Resample Data” on page 4-54 –– Resample data using zero-order hold or linear
interpolation.

• “Replace Data” on page 4-54 –– Replace data with a constant value, region initial
value, region final value, or a line. You can use this functionality to replace outliers.

You can perform as many preprocessing operations on your data as are required for your
application. For instance, you can both filter the data and remove an offset.

Remove Offset

In the Remove Offset tab, you can choose to remove offset from all signals or specify the
signal you choose. It is important for good identification results to remove data offsets.
Select the value to remove from the Offset to remove drop down list. The options are:

• A constant value. Enter the value in the box. (Default: 0)
• Mean of the data, to create zero-mean data.
• Signal initial value.

As you change the offset value, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking

.

Scale Data

In the Scale Data tab, you can choose to scale all signals or specify a signal to scale.
Select the scaling value from the Scale to use drop-down list. The options are:



 Preprocessing Data

4-53

• A constant value. Enter the value in the box. (Default: 1)
• Signal maximum value.
• Signal initial value.

As you change the scaling, the modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking

.

Extract Data

Select a subset of data to use for estimation in Extract Data tab. You can extract data
graphically or by specifying start time and end time. To extract data graphically, click
and drag the vertical bars to select a region of the data to use. Data outside the region

that is highlighted yellow is discarded when you click .

Filter Data

You can filter your data using a low-pass, high-pass, or band-pass filter. A low-pass filter
blocks high frequency signals, a high-pass filter blocks low frequency signals, and a band-
pass filter combines the properties of both low- and high-pass filters.

On the Low-Pass Filter, High-Pass Filter, or Band-Pass Filter tab, you can choose
to filter all signals or specify a particular signal. For the low-pass and high-pass filtering,
you can specify the normalized cutoff frequency of the signal. For the band-pass filter,
you can specify the normalized start and end frequencies. Specify the frequencies by
either entering the value in the associated field on the tab. Alternatively, you can specify
filter frequencies graphically, by dragging the vertical bars in the frequency-domain plot
of your data.

Click Options to specify the filter order, and select zero-phase shift filter.

After making choices, update the existing data with the preprocessed data by clicking

.



4 Designing Compensators

4-54

Resample Data

In the Resample Data tab, specify the sampling period using the Resample
with sample period: field. You can resample your data using one of the following
interpolation methods:

• Zero-order hold — Fill the missing data sample with the data value immediately
preceding it.

• Linear interpolation — Fill the missing data using a line that connects the two
data points.

By default, the resampling method is set to zero-order hold. You can select the
linear interpolation method from the Resample Using drop-down list.

The modified data is shown in preview in the plot.

After making choices, update the existing data with the preprocessed data by clicking

.

Replace Data

In the Replace Data tab, select data to replace by dragging across a region in the plot.
Once you select data, choose how to replace it using the Replace selected data drop-
down list. You can replace the data you select with one of these options:

• A constant value
• Region initial value
• Region final value
• A line

The replaced preview data changes color and the replacement data appears on the plot.
At any time before updating, click Clear preview to clear the data you replaced and
start over.

After making choices, update the existing data with the preprocessed data by clicking

.



 Preprocessing Data

4-55

Replace Data can be useful, for example, to replace outliers. Outliers are data values
that deviate from the mean by more than three standard deviations. When estimating
parameters from data containing outliers, the results may not be accurate. Hence, you
might choose to replace the outliers in the data before you estimate the parameters.

Related Examples
• “Interactively Estimate Plant Parameters from Response Data”

More About
• “Input/Output Data for Identification”
• “System Identification for PID Control”



4 Designing Compensators

4-56

PID Tuning Algorithm

Typical PID tuning objectives include:

• Closed-loop stability — The closed-loop system output remains bounded for bounded
input.

• Adequate performance — The closed-loop system tracks reference changes and
suppresses disturbances as rapidly as possible. The larger the loop bandwidth (the
frequency of unity open-loop gain), the faster the controller responds to changes in the
reference or disturbances in the loop.

• Adequate robustness — The loop design has enough gain margin and phase margin to
allow for modeling errors or variations in system dynamics.

MathWorks® algorithm for tuning PID controllers meets these objectives by tuning
the PID gains to achieve a good balance between performance and robustness. By
default, the algorithm chooses a crossover frequency (loop bandwidth) based on the plant
dynamics, and designs for a target phase margin of 60°. When you interactively change
the response time, bandwidth, transient response, or phase margin using the PID Tuner
interface, the algorithm computes new PID gains.

For a given robustness (minimum phase margin), the tuning algorithm chooses a
controller design that balances the two measures of performance, reference tracking and
disturbance rejection. You can change the design focus to favor one of these performance
measures. To do so, use using the DesignFocus option of pidtune at the command line
or the Options dialog box in the PID Tuner.

When you change the design focus, the algorithm attempts to adjust the gains to favor
either reference tracking or disturbance rejection, while achieving the same minimum
phase margin. The more tunable parameters there are in the system, the more likely
it is that the PID algorithm can achieve the desired design focus without sacrificing
robustness. For example, setting the design focus is more likely to be effective for PID
controllers than for P or PI controllers. In all cases, fine-tuning the performance of the
system depends strongly on the properties of your plant. For some plants, changing the
design focus has little or no effect.

Related Examples
• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID

Tuner)”



 PID Tuning Algorithm

4-57

• “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection at
Command Line”



4 Designing Compensators

4-58

System Identification for PID Control

In this section...

“Plant Identification” on page 4-58
“Linear Approximation of Nonlinear Systems for PID Control” on page 4-59
“Linear Process Models” on page 4-60
“Advanced System Identification Tasks” on page 4-61

Plant Identification

In many situations, a dynamic representation of the system you want to control is
not readily available. One solution to this problem is to obtain a dynamical model
using identification techniques. The system is excited by a measurable signal and the
corresponding response of the system is collected at some sample rate. The resulting
input-output data is then used to obtain a model of the system such as a transfer
function or a state-space model. This process is called system identification or estimation.
The goal of system identification is to choose a model that yields the best possible fit
between the measured system response to a particular input and the model’s response to
the same input.

If you have a Simulink® model of your control system, you can simulate input/output
data instead of measuring it. The process of estimation is the same. The system response
to some known excitation is simulated, and a dynamical model is estimated based upon
the resulting simulated input/output data.

Whether you use measured or simulated date for estimation, once a suitable plant model
is identified, you impose control objectives on the plant based on your knowledge of
the desired behavior of the system that the plant model represents. You then design a
feedback controller to meet those objectives.

If you have System Identification Toolbox software, you can use PID Tuner for both
plant identification and controller design in a single interface. You can import input/
output data and use it to identify one or more plant models. Or, you can obtain simulated
input/output data from a Simulink model and use that to identify one or more plant
models. You can then design and verify PID controllers using these plants. The PID
Tuner also allows you to directly import plant models, such as one you have obtained
from an independent identification task.



 System Identification for PID Control

4-59

For an overview of system identification, see About System Identification in the System
Identification Toolbox documentation.

Linear Approximation of Nonlinear Systems for PID Control

The dynamical behavior of many systems can be described adequately by a linear
relationship between the system’s input and output. Even when behavior becomes
nonlinear in some operating regimes, there are often regimes in which the system
dynamics are linear. For example, the behavior of an operational amplifier or the lift-vs-
force dynamics of aerodynamic bodies can be described by linear models, within a certain
limited operating range of inputs. For such a system, you can perform an experiment
(or a simulation) that excites the system only in its linear range of behavior and collect
the input/output data. You can then use the data to estimate a linear plant model, and
design a PID controller for the linear model.

In other cases, the effects of nonlinearities are small. In such a case, a linear model
can provide a good approximation, such that the nonlinear deviations are treated as
disturbances. Such approximations depend heavily on the input profile, the amplitude
and frequency content of the excitation signal.

Linear models often describe the deviation of the response of a system from some
equilibrium point, due to small perturbing inputs. Consider a nonlinear system whose
output, y(t), follows a prescribed trajectory in response to a known input, u(t). The
dynamics are described by dx(t)/dt = f(x, u), y = g(x,u) . Here, x is a vector of internal
states of the system, and y is the vector of output variables. The functions f and g, which
can be nonlinear, are the mathematical descriptions of the system and measurement
dynamics. Suppose that when the system is at an equilibrium condition, a small
perturbation to the input, Δu, leads to a small perturbation in the output, Δy:

D D D

D D D

&x
f

x
x

f

u
u

y
g

x
x

g

u
u

=
∂

∂
+

∂

∂

=
∂

∂
+

∂

∂

,

.

For example, consider the system of the following Simulink block diagram:



4 Designing Compensators

4-60

When operating in a disturbance-free environment, the nominal input of value 50 keeps
the plant along its constant trajectory of value 2000. Any disturbances would cause the
plant to deviate from this value. The PID Controller’s task is to add a small correction
to the input signal that brings the system back to its nominal value in a reasonable
amount of time. The PID Controller thus needs to work only on the linear deviation
dynamics even though the actual plant itself might be nonlinear. Thus, you might be able
to achieve effective control over a nonlinear system in some regimes by designing a PID
controller for a linear approximation of the system at equilibrium conditions.

Linear Process Models

A common use case is designing PID controllers for the steady-state operation of
manufacturing plants. In these plants, a model relating the effect of a measurable input
variable on an output quantity is often required in the form of a SISO plant. The overall
system may be MIMO in nature, but the experimentation or simulation is carried out in
a way that makes it possible to measure the incremental effect of one input variable on a
selected output. The data can be quite noisy, but since the expectation is to control only
the dominant dynamics, a low-order plant model often suffices. Such a proxy is obtained
by collecting or simulating input-output data and deriving a process model (low order
transfer function with unknown delay) from it. The excitation signal for deriving the data
can often be a simple bump in the value of the selected input variable.



 System Identification for PID Control

4-61

Advanced System Identification Tasks

In the PID Tuner, you can only identify single-input, single output, continuous-
time plant models. Additionally, the PID Tuner cannot perform the following system
identification tasks:

• Identify transfer functions of arbitrary number of poles and zeros. (PID Tuner can
identify transfer functions up to three poles and one zero, plus an integrator and a
time delay. PID Tuner can identify state-space models of arbitrary order.)

• Estimate the disturbance component of a model, which can be useful for separating
measured dynamics from noise dynamics.

• Validate estimation by comparing the plant response against an independent dataset.
• Perform residual analysis.

If you need these enhanced identification features, import your data into the System
Identification Tool (systemIdentification). Use the System Identification Tool to
perform model identification and export the identified model to the MATLAB workspace.
Then import the identified model into PID Tuner for PID controller design.

For more information about the System Identification Tool, see “Identify Linear Models
Using System Identification App”.

Related Examples
• “Interactively Estimate Plant Parameters from Response Data”

More About
• “Input/Output Data for Identification” on page 4-62
• “Choosing Identified Plant Structure” on page 4-64



4 Designing Compensators

4-62

Input/Output Data for Identification

In this section...

“Data Preparation” on page 4-62
“Data Preprocessing” on page 4-62

Data Preparation

Identification of a plant model for PID tuning requires a single-input, single-output
dataset.

If you have measured data, use the data import dialogs to bring in identification data.
Some common sources of identification data are transient tests such as bump test and
impact test. For such data, PID Tuner provides dedicated dialogs that require you to
specify data for only the output signal while characterizing the input by its shape. For an
example, see “Interactively Estimate Plant Parameters from Response Data”.

If you want to obtain input/output data by simulating a Simulink model, the PID Tuner
interface lets you specify the shape of the input stimulus used to generate the response.
For an example, see the Simulink Control Design™ example “Design a PID Controller
Using Simulated I/O Data.”

Data Preprocessing

PID Tuner lets you preprocess your imported or simulated data. PID Tuner provides
various options for detrending, scaling, and filtering the data.

It is strongly recommended to remove any equilibrium-related signal offsets from the
input and output signals before proceeding with estimation. You can also filter the data
to focus the signal contents to the frequency band of interest.

Some data processing actions can alter the nature of the data, which can result in
transient data (step, impulse or wide pulse responses) to be treated as arbitrary input/
output data. When that happens the identification plot does not show markers for
adjusting the model time constants and damping coefficient.

For an example that includes a data-preprocessing step, see: “Interactively Estimate
Plant Parameters from Response Data”.



 Input/Output Data for Identification

4-63

For further information about data-preprocessing options, see “Preprocessing Data” on
page 4-51.



4 Designing Compensators

4-64

Choosing Identified Plant Structure

PID Tuner provides two types of model structures for representing the plant dynamics:
process models and state-space models.

Use your knowledge of system characteristics and the level of accuracy required by your
application to pick a model structure. In absence of any prior information, you can gain
some insight into the order of dynamics and delays by analyzing the experimentally
obtained step response and frequency response of the system. For more information see
the following topics in the System Identification Toolbox documentation:

• “Identifying Impulse-Response Models”
• “Identifying Frequency-Response Models”

Each model structure you choose has associated dynamic elements, or model parameters.
You adjust the values of these parameters manually or automatically to find an identified
model that yields a satisfactory match to your measured or simulated response data.
In many cases, when you are unsure of the best structure to use, it helps to start with
the simplest model structure, transfer function with one pole. You can progressively try
identification with higher-order structures until a satisfactory match between the plant
response and measured output is achieved. The state-space model structure allows an
automatic search for optimal model order based on an analysis of the input-output data.

When you begin the plant identification task, a transfer function model structure with
one real pole is selected by default. This default set up is not sensitive to the nature
of the data and may not be a good fit for your application. It is therefore strongly
recommended that you choose a suitable model structure before performing parameter
identification.

In this section...

“Process Models” on page 4-65
“State-Space Models” on page 4-68
“Existing Plant Models” on page 4-70
“Switching Between Model Structures” on page 4-71
“Estimating Parameter Values” on page 4-72
“Handling Initial Conditions” on page 4-72



 Choosing Identified Plant Structure

4-65

Process Models

Process models are transfer functions with 3 or fewer poles, and can be augmented by
addition of zero, delay and integrator elements. Process models are parameterized by
model parameters representing time constants, gain, and time delay. In PID Tuner,
choose a process model in the Plant Identification tab using the Structure menu.

For any chosen structure you can optionally add a delay, a zero and/or an integrator
element using the corresponding checkboxes. The model transfer function configured by
these choices is displayed next to the Structure menu.



4 Designing Compensators

4-66

The simplest available process model is a transfer function with one real pole and no zero
or delay elements:

H s
K

T s
( ) =

+
1

1
.

This model is defined by the parameters K, the gain, and T1, the first time constant. The
most complex process-model structure choose has three poles, an additional integrator,
a zero, and a time delay, such as the following model, which has one real pole and one
complex conjugate pair of poles:

H s K
T s

s T s T s T s

e
z s( ) =

+

+( ) + +( )
-1

1 2 11
2 2

w w

t

z
.

In this model, the configurable parameters include the time constants associated with
the poles and the zero, T1, Tω, and Tz. The other parameters are the damping coefficient
ζ, the gain K, and the time delay τ.

When you select a process model type, the PID Tuner automatically computes initial
values for the plant parameters and displays a plot showing both the estimated model
response and your measured or simulated data. You can edit the parameter values
graphically using indicators on the plot, or numerically using the Plant Parameters
editor. For an example illustrating this process, see “Interactively Estimate Plant
Parameters from Response Data”.

The following table summarizes the various parameters that define the available types of
process models.



 Choosing Identified Plant Structure

4-67

Parameter Used By Description

K — Gain All transfer functions Can take any real value.

In the plot, drag the plant
response curve (blue) up or
down to adjust K.

T1 — First time constant Transfer function with one
or more real poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the red x
left (towards zero) or right
(towards T) to adjust T1.

T2— Second time constant Transfer function with two
real poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the magenta
x left (towards zero) or right
(towards T) to adjust T2.

Tω — Time constant
associated with the natural
frequency ωn, where Tω =
1/ωn

Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust
Tω.

ζ — Damping coefficient Transfer function with
underdamped pair (complex
conjugate pair) of poles

Can take any value between
0 and 1.

In the plot, drag one of the
orange response envelope
curves left (towards zero) or
right (towards T) to adjust ζ.



4 Designing Compensators

4-68

Parameter Used By Description

τ — Transport delay Any transfer function Can take any value between
0 and T, the time span of
measured or simulated data.

In the plot, drag the orange
vertical bar left (towards
zero) or right (towards T) to
adjust τ.

Tz — Model zero Any transfer function Can take any value between
–T and T, the time span of
measured or simulated data.

In the plot, drag the red
circle left (towards –T) or
right (towards T) to adjust
Tz.

Integrator Any transfer function Adds a factor of 1/s to the
transfer function. There is
no associated parameter to
adjust.

State-Space Models

The state-space model structure for identification is primarily defined by the choice of
number of states, the model order. Use the state-space model structure when higher
order models than those supported by process model structures are required to achieve
a satisfactory match to your measured or simulated I/O data. In the state-space model
structure, the system dynamics are represented by the state and output equations:

&x Ax Bu

y Cx Du

= +

= +

,

.

x is a vector of state variables, automatically chosen by the software based on the
selected model order. u represents the input signal, and y the output signals.

To use a state-space model structure, in the Plant Identification tab, in the Structure
menu, select State-Space Model. Then click Configure Structure to open the State-
Space Model Structure dialog box.



 Choosing Identified Plant Structure

4-69

Use the dialog box to specify model order, delay and feedthrough characteristics. If you
are unsure about the order, select Pick best value in the range, and enter a range
of orders. In this case, when you click Estimate in the Plant Estimation tab, the
software displays a bar chart of Hankel singular values. Choose a model order equal to
the number of Hankel singular values that make significant contributions to the system
dynamics.

When you choose a state-space model structure, the identification plot shows a plant
response (blue) curve only if a valid estimated model exists. For example, if you change
structure after estimating a process model, the state-space equivalent of the estimated
model is displayed. If you change the model order, the plant response curve disappears
until a new estimation is performed.

When using the state-space model structure, you cannot directly interact with the
model parameters. The identified model should thus be considered unstructured with no
physical meaning attached to the state variables of the model.

However, you can graphically adjust the input delay and the overall gain of the model.
When you select a state-space model with a time delay, the delay is represented on the
plot by a vertical orange bar is shown on the plot. Drag this bar horizontally to change
the delay value. Drag the plant response (blue) curve up and down to adjust the model
gain.



4 Designing Compensators

4-70

Existing Plant Models

Any previously imported or identified plant models are listed the Plant List section of
the Data Browser.

You can define the model structure and initialize the model parameter values using one
of these plants. To do so, in the Plant Identification tab, in the Structure menu, select
the linear plant model you want to use for structure an initialization.



 Choosing Identified Plant Structure

4-71

If the plant you select is a process model (idproc object), PID Tuner uses its structure. If
the plant any other model type, PID Tuner uses the state-space model structure.

Switching Between Model Structures

When you switch from one model structure to another, the software preserves the model
characteristics (pole/zero locations, gain, delay) as much as possible. For example, when
you switch from a one-pole model to a two-pole model, the existing values of T1, Tz, τ and
K are retained, T2 is initialized to a default (or previously assigned, if any) value.



4 Designing Compensators

4-72

Estimating Parameter Values

Once you have selected a model structure, you have several options for manually or
automatically adjusting parameter values to achieve a good match between the estimated
model response and your measured or simulated input/output data. For an example that
illustrates all these options, see:

• “Interactively Estimate Plant Parameters from Response Data” (Control System
Toolbox)

• “Interactively Estimate Plant from Measured or Simulated Response Data” Simulink
Control Design)

The PID Tuner does not perform a smart initialization of model parameters when a
model structure is selected. Rather, the initial values of the model parameters, reflected
in the plot, are arbitrarily-chosen middle of the range values. If you need a good starting
point before manually adjusting the parameter values, use the Initialize and Estimate
option from the Plant Identification tab.

Handling Initial Conditions

In some cases, the system response is strongly influenced by the initial conditions. Thus
a description of the input to output relationship in the form of a transfer function is
insufficient to fit the observed data. This is especially true of systems containing weakly
damped modes. PID Tuner allows you to estimate initial conditions in addition to the
model parameters such that the sum of the initial condition response and the input
response matches the observed output well. Use the Estimation Options dialog box
to specify how the initial conditions should be handled during automatic estimation. By
default, the initial condition handling (whether to fix to zero values or to estimate) is
automatically performed by the estimation algorithm. However, you can enforce a certain
choice by using the Initial Conditions menu.

Initial conditions can only be estimated with automatic estimation. Unlike the
model parameters, they cannot be modified manually. However, once estimated they
remain fixed to their estimated values, unless the model structure is changed or new
identification data is imported.

If you modify the model parameters after having performed an automatic estimation, the
model response will show a fixed contribution (i.e., independent of model parameters)
from initial conditions. In the following plot, the effects of initial conditions were
identified to be particularly significant. When the delay is adjusted afterwards, the



 Choosing Identified Plant Structure

4-73

portion of the response to the left of the input delay marker (the τ Adjustor) comes purely
from initial conditions. The portion to the right of the τ Adjustor contains the effects of
both the input signal as well as the initial conditions.

Related Examples
• “Interactively Estimate Plant Parameters from Response Data”

More About
• “System Identification for PID Control”



4 Designing Compensators

4-74

SISO Design Tool

In this section...

“Tune Compensator Parameters Using the SISO Design Tool” on page 4-74
“Components of the SISO Tool” on page 4-83
“Design Options in the SISO Tool” on page 4-84
“Opening the SISO Design Tool” on page 4-84
“Using the SISO Design Task Node in the Control and Estimation Tools Manager” on
page 4-86
“Importing Models into the SISO Design Tool” on page 4-87
“Feedback Structure” on page 4-91
“Analysis Plots for Loop Responses” on page 4-93
“Using the Graphical Tuning Window” on page 4-99
“Exporting the Compensator and Models” on page 4-105
“Storing and Retrieving Intermediate Designs” on page 4-107

Tune Compensator Parameters Using the SISO Design Tool

In this example, you get an overview of the steps for tuning compensator parameters
using Control System Designer (the SISO Design GUI). Before you begin, you need:

• A model in the MATLAB workspace representing your plant
• Design requirements for your system

To tune parameters:

1 Open the control design GUIs by typing the following in the MATLAB Command
Window:

controlSystemDesigner

This command opens the Control and Estimation Tools Manager and the SISO
Design Tool, as shown in the following figure.



 SISO Design Tool

4-75

Note: You can also open the SISO Design tools from the MATLAB desktop. To do
so, in the Apps tab, click Control System Designer. Then, in the Control and
Estimation Tools Manager, click System Data to specify your plant model.

2 Define the control architecture for your system.



4 Designing Compensators

4-76

a In the Architecture tab of the Control and Estimation Tools Manager, click
Control Architecture.

b In the Control Architecture dialog box, select the control architecture.
c Specify the sign of summing junctions as + or -.

Select
control
architecture

Specify sign of
summing junctions
as + or -



 SISO Design Tool

4-77

3 Specify the plant model and initial guesses for the compensator elements in the
control architecture.

a In the Architecture tab of the Control and Estimation Tools Manager, click
System Data.

b In the System Data dialog box, browse for a model in the MATLAB workspace.

Browse for
model in MATLAB
workspace

4 Design a compensator using automated tuning, for example PID Tuning.



4 Designing Compensators

4-78

a In the Automated Tuning tab of the Control and Estimation Tools Manager,
select an automated tuning method.

b Specify tuning options.
c Click Update Compensator to tune parameters.

Select
automated
tuning method

Specify
tuning options

Tune parameters

5 Evaluate the system's closed-loop performance.

a Plot the system response.

i In the Analysis Plots tab, select a plot type.
ii Select the type of response for each plot.



 SISO Design Tool

4-79

b Display specific performance characteristic for your system. Compare values to
design requirements.

i Right-click to select performance characteristics.
ii Click on the dot that appears to view the characteristic value.



4 Designing Compensators

4-80

Right-click
to select
performance
characteristics

Click dot
to view value

6 Refine compensator design using graphical tuning.

a Create plots for graphical tuning.

i In the Graphical Tuning tab, select the loop to tune in each plot.
ii Select plot types.



 SISO Design Tool

4-81

Select the loop to
tune in each plot

Select plot types

b In a design plot, modify the compensator by adding poles, zeros, lead, and lag,
for example. To do this, right-click to add dynamic elements in the controller
structure.



4 Designing Compensators

4-82

Right-click to
add dynamic
elements in
controller structure

c Add a new pole, for example, by clicking the pole location on the plot.
d Modify the compensator structure by moving the poles, zeros, and other dynamic

elements directly on the plot.



 SISO Design Tool

4-83

Click and
drag plot

7 Export the compensator to the MATLAB workspace for further analysis.

a In the Control and Estimation Tools Manager, select File > Export.
b In the SISO Tool Export dialog box, select the compensator.
c Click Export to Workspace.

Components of the SISO Tool

The SISO Design Tool has the following components:

• SISO Design Task node in the Control and Estimation Tools Manager is a user
interface (UI) that facilitates the design of compensators for single-input, single-
output feedback loops through a series of interactive tabs.



4 Designing Compensators

4-84

• The Graphical Tuning window is a graphical user interface (GUI) for displaying and
manipulating the Bode, root locus, and Nichols plots for the controller currently being
designed. This window is titled SISO Design for Design Name.

• The Linear System Analyzer associated with the SISO Design Task. For
instructions on how to operate the Linear System Analyzer, see “Linear System
Analyzer for SISO Design Task Design Requirements”.

Design Options in the SISO Tool

The SISO Design Tool facilitates the design of compensators for single-input, single-
output feedback loops, lets you iterate on your designs and perform the following tasks:

• Manipulate closed-loop dynamics using root locus techniques.
• Shape open-loop Bode responses.
• Add compensator poles and zeros, lead/lag networks and notch filters.
• Add and tune lead/lag networks and notch filters.
• Inspect closed-loop responses using the Linear System Analyzer.
• Adjust phase and gain margins.
• Perform multi-loop control design.
• Perform control design analysis for multiple models.
• Convert models between discrete and continuous time.
• Automate compensator design.

Opening the SISO Design Tool

You can open the SISO Design Tool using an LTI model or an array of LTI models. This
topic shows how to open the SISO Design Tool with the DC motor example.

If you have not built the DC motor model, type

load ltiexamples

at the MATLAB prompt. This loads a collection of linear models, including the DC motor.
To open the SISO Design Tool and import the DC motor, type

controlSystemDesigner(sys_dc)



 SISO Design Tool

4-85

This command opens:

• The SISO Design Task node in the Control and Estimation Tools Manager
• The Graphical Tuning window with the root locus and open-loop Bode diagrams for

the DC motor plotted by default

SISO Design Task Node (Architecture Tab)



4 Designing Compensators

4-86

Graphical Tuning Window with the DC Motor Example

Using the SISO Design Task Node in the Control and Estimation Tools
Manager

The SISO Design Task node in the Control and Estimation Tools Manager contains the
following tabs for specifying controller design and behavior:

• Architecture:

• Change the feedback structure and label signals and blocks.
• Configure loops for multi-loop design by opening signals to remove the effects of

other feedback loops.
• Import LTI models or row or column arrays of LTI models into your system.



 SISO Design Tool

4-87

• Convert sample time of the system or switch between different sample times to
design different compensators.

• Specify nominal model and frequency grid for multimodel computations.
• Compensator Editor:

• Directly edit compensator poles, zeros, and gains.
• Add or remove compensator poles and zeros.

• Graphical Tuning:

• Configure design plots in the Graphical Tuning window.
• Use design plots to graphically manipulate system response.

• Analysis Plots:

• Configure analysis plots in the Linear System Analyzer.
• Use analysis plots to view the response of open- or closed-loop systems.

• Automated Tuning:

• Automatically generate compensators using optimization-based, PID, internal
model control (IMC), linear-quadratic-Gaussian (LQG), or loop shaping methods.

• Use optimization-based methods that automatically tune the system to
satisfy design requirements (available when you have the Simulink Design
Optimization™ product).

Importing Models into the SISO Design Tool

If you type controlSystemDesigner at the MATLAB prompt, the Control and
Estimation Tools Manager opens with the SISO Design Task node and an empty
Graphical Tuning window.

You can import an LTI model or a row or column array of LTI models by clicking System
Data in the Architecture page, as shown in the following figure.



4 Designing Compensators

4-88

The System Data dialog box opens, as shown in the following figure.

• G is a plant modeled as an LTI model or multiple plants modeled as a row or column
array of LTI models. If H is also an array, their sizes must match.



 SISO Design Tool

4-89

• H is the sensor modeled as an LTI model or multiple sensors modeled as a row or
column array of LTI models. If G is also an array, their sizes must match.

• C is a controller and is an LTI model.
• F is a prefilter and is an LTI model.

The default values of G, H, C, and F are 1. See “Feedback Structure” on page 4-91 for
more information.

Note: If you import an array of LTI models for either G or H or both for control
design, you can use the default multimodel options or configure the options by clicking
Multimodel Configuration in the Architecture tab. For more information, see
“Control Design Analysis of Multiple Models” on page 4-184.

To import the DC motor model:

1 Select G and click Browse. The Model Import dialog box opens, as shown in the
following figure.

2 Select sys_dc from the Available Models list. Click Import, and then click Close.

You can now see sys_dc in the System Data dialog box.



4 Designing Compensators

4-90

3 Click OK.

The Graphical Tuning window updates with the DC motor model, as shown in the
following figure.



 SISO Design Tool

4-91

Feedback Structure

The SISO Design Tool, by default, assumes that the compensator is in the forward path,
i.e., that the feedback structure looks like this figure.

Default Feedback Structure — Compensator in the Forward Path

In this figure:



4 Designing Compensators

4-92

• G represents the plant
• H represents the sensor dynamics
• F represents the prefilter
• C represents the compensator

The default values for F, H, and C are all 1. You can see the default values in the System
Data dialog box. This means that, by default, the compensator has unity gain.

For the DC motor, G contains the DC motor model, sys_dc.

Alternative Feedback Structures

In the Architecture page, click Control Architecture to open the Control Architecture
dialog box.

You can use the Signs and Blocks and Signals panes to change the sign of the
feedback signal into a summing junction and rename blocks and signals in the diagram
respectively. See “Block Diagram Structure Modifications” for more details.

On any tab in the SISO Design Task node, click Show Architecture to see the current
architecture and a list of the identifiers and names associated with the components.



 SISO Design Tool

4-93

Analysis Plots for Loop Responses

As you design different controllers, you examine the various loop responses for a
particular design. For example, to view the closed-loop step response, click the Analysis
Plots tab. This tab lists the available responses, as shown in the following figure.



4 Designing Compensators

4-94

Select the plot types for each plot in the Analysis Plots area. Then select the plots to
appear in the Plots list in the Contents of Plots table, as shown in the following figure.



 SISO Design Tool

4-95

Analysis Plots Loop Response Selection

After you select a plot, the Linear System Analyzer opens and displays the appropriate
response(s) opens. You can also click Show Analysis Plot to open the Linear System
Analyzer.

The following figure shows the resulting plot for the closed-loop step response of the DC
motor.



4 Designing Compensators

4-96

Linear System Analyzer Showing the Step Response for the DC Motor

The settling time of the DC motor is about 1.5 seconds, which is too slow for many
applications. Also, the plot shows a large steady-state error. You can use Bode diagram
techniques to improve the response time and steady-state error of the DC motor step
response, as described in “Bode Diagram Design” on page 4-110.

For a row or column array of LTI models, the analysis plots show the response of the
nominal model only. To view the responses of the remaining models in the array, right-
click the plot, and select one of the following options:

• Multimodel Display > Bounds — Displays an envelope encompassing all model
responses.



 SISO Design Tool

4-97

• Multimodel Display > Individual Responses — Displays individual model
responses.



4 Designing Compensators

4-98

The plot line in darker shade of blue is the response of the nominal model. When you
design a controller for the nominal plant, you can simultaneously analyze the controller's
effect on the remaining model responses in the array. For more information on analyzing
control design for multiple models, see “Control Design Analysis of Multiple Models” on
page 4-184.

As you select different compensator designs, the software computes the responses and
updates the response plots in real-time in the Linear System Analyzer associated with
your SISO Design Task. For an array, this computation is expensive. Therefore, real-
time updates may cause delay in refreshing the plots for:

• A large number of responses
• Responses of a large number of models

To deactivate real-time updates, unselect the Real-Time Update option.



 SISO Design Tool

4-99

Using the Graphical Tuning Window

The SISO Design for SISO Design Task graphical tuning window is a graphical user
interface (GUI) that you use to display and manipulate the Bode, root locus, and Nichols
plots for the controller currently being designed. You can accomplish most control design
tasks using the tabs in the SISO Design Task node in the Control and Estimation Tools
Manager.

The graphical tuning window shows the plots configured in the Graphical Tuning tab.

This topic describes some of the methods you can use to navigate in the Graphical Tuning
window and manipulate the window's appearance.



4 Designing Compensators

4-100

Graphical Tuning Window Display

The Graphical Tuning window shows:

• Poles as x's
• Zeros as o's
• Gain and phase margins (by default) in the lower-left corners of the Bode magnitude

and phase plots

For the DC motor, the graphical tuning window resembles the following figure.



 SISO Design Tool

4-101

For a row or column arrays of LTI models, the plots show the individual responses and
poles and zeros of all models in the array, as shown in the following figure.

The plot line in darker shade of blue represents the response of the nominal model. This
plot also displays the response characteristics of the nominal model.

You can change the display to view an envelope that encompasses all individual model
responses. To do so, right-click the plot, and select Multimodel Display > Bounds. The
bounds resemble the following figure.



4 Designing Compensators

4-102

As you are designing a controller for the nominal plant, you can simultaneously analyze
the controller's effect on the remaining models in the array. The software computes the
response for each model and plots them. This computation is expensive and results in a
slower refresh of the plots for:

• Large number of responses
• Responses for a large number of models
• Dense frequency grid



 SISO Design Tool

4-103

To speed up the plot updates, change the display to plot the envelope instead of
individual responses. For more information, see “Control Design Analysis of Multiple
Models” on page 4-184.

Changing Units on a Plot

The SISO Design Tool provides editors for setting plot options in the Graphical Tuning
window. For example, if you want to change the frequency units on all the Bode plots
created in the SISO Design Tool from rad/s to Hertz, select SISO Tool Preferences
from the Edit menu in the SISO Design Task node on the Control and Estimation Tools
Manager, as shown in the next figure.

This opens the SISO Tool Preferences dialog box.



4 Designing Compensators

4-104

Use the options on the Units page to make the change. This unit change persists for the
entire session.

Right-Click Menus

The SISO Design Tool has right-click menus available in any of the plot regions. Open
the Bode magnitude menu by right-clicking in the Bode magnitude plot. The following
menu appears.

Right-Click Menu for the Bode Magnitude Plot

Although the menus for each plot generally contain the same options, there are some
options specific to each plot type:



 SISO Design Tool

4-105

• The Open-Loop Bode Editor has a Gain Target option, the Closed-Loop Bode Editor
has a Select Compensator option instead.

• For arrays of LTI models, the Multimodel Display option for the Root Locus Editor
has an option to show the poles and zeros of the nominal or all models, instead of
Bounds and Individual Responses options.

The right-click menus contain numerous features. The DC motor example uses many of
the available features; for a complete discussion of the right-click menus, see the help for
the SISO Design Tool."

Exporting the Compensator and Models

After you design the controller, you may want to save your design parameters for future
implementation. You can do this by selecting:

• File > Export in the Control and Estimation Tools Manager
• File > Export in the Graphical Tuning window.

The SISO Tool Export dialog box opens:

• Select models to export area shows a list of models for the components of your
designs. For a plant or sensor modeled as row or column array of LTI models, the
components are also arrays of LTI models.



4 Designing Compensators

4-106

• Export As column displays variables with default names or previously named in the
System Data dialog box.

• Select design drop-down list lets you view the components of other designs.

To export your controller to the workspace:

1 Select Compensator C in the Component column. If you want to change the name,
double-click in the cell for Compensator C.

To select multiple components, use the Shift key if they are all adjacent and the
Ctrl key if they are not.

2 Click Export to Workspace to export the compensator to the MATLAB workspace.
3 At the MATLAB prompt, type

who

to view the compensator variable C.
4 To see the format in which this variable is stored, type

C

Clicking Export to Disk opens the Export to Disk dialog box.

You can save your models as MAT-files in any folder. The default name for the MAT-file
is the name of your original model. You can also specify a name for the MAT-file. If you
save multiple components, they are stored in a single MAT-file.



 SISO Design Tool

4-107

Storing and Retrieving Intermediate Designs

You can store and retrieve intermediate compensators while you iterate on your
compensator design. To store intermediate designs, click the Design History node
or Store Design, both located on the SISO Design Task node in the Control and
Estimation Tools Manager.

Alternatively, you can select Store/Retrieve from the Designs menu in the Graphical
Tuning window. Using either method, the following Design History page opens.

If you have any intermediate designs already stored, they will appear on the Design
History page.

Click Store Design to save the current design with the default name Design; the
suffix increments when you store additional compensators without renaming them. You
can rename the design by right-clicking the name under the node and selecting Rename.



4 Designing Compensators

4-108

To retrieve intermediate designs, again click the Design History node or select Store/
Retrieve from the Designs menu. From the Design History page, select the design to
retrieve, and then click Retrieve Design, as shown next.

Design History Page Listing Current Designs

The Graphical Tuning window automatically reverts to the selected compensator design.

Click any design name in the Design History to view a snapshot summary of the
design, as shown in the following figure.



 SISO Design Tool

4-109

Design Snapshot Summary

Return to the compensator list by clicking the Design History node.

You can delete an intermediate design by selecting it from the Design History page and
clicking Delete.



4 Designing Compensators

4-110

Bode Diagram Design

In this section...

“What Is Bode Diagram Design?” on page 4-110
“Bode Diagram Design for DC Motor” on page 4-110
“Adjusting the Compensator Gain” on page 4-111
“Adjusting the Bandwidth” on page 4-112
“Adding an Integrator” on page 4-114
“Adding a Lead Network” on page 4-118
“Moving Compensator Poles and Zeros” on page 4-123
“Adding a Notch Filter” on page 4-126
“Modifying a Prefilter” on page 4-131

What Is Bode Diagram Design?

One technique for compensator design is to work with Bode diagrams of the open-loop
response (loop shaping).

Using Bode diagrams, you can

• Design to gain and phase margin specifications
• Adjust the bandwidth
• Add notch filters for disturbance rejection

Bode Diagram Design for DC Motor

The following topics use the DC motor example to show how to create a compensator
using Bode diagram design techniques. From “SISO Example: The DC Motor” on page
2-3, the transfer function of the DC motor is

Transfer function:

       1.5

------------------

s^2 + 14 s + 40.02



 Bode Diagram Design

4-111

For this example, the design criteria are as follows:

• Rise time of less than 0.5 second
• Steady-state error of less than 5%
• Overshoot of less than 10%
• Gain margin greater than 20 dB
• Phase margin greater than 40 degrees

Adjusting the Compensator Gain

The Linear System Analyzer Showing the Step Response for the DC Motor, shows that
the closed-loop step response is too slow. The simplest approach to speeding up the
response is to increase the gain of the compensator.

To increase the gain:

1 Click the Compensator Editor tab to open the Compensator Editor page.
2 Select C from the compensator selection list.
3 In the text box to the right of the equal sign in the Compensator area, enter 38 and

press Enter.



4 Designing Compensators

4-112

Adjusting Compensator Gain on the Compensator Editor Page

The SISO Design Tool calculates the compensator gain, and Bode and root locus graphs
in the Graphical Tuning window are updated.

Alternatively, you can set the gain in the Graphical Tuning window by grabbing the Bode
magnitude line and dragging it upward. The gain and poles change as the closed-loop set
point is recomputed, and the new compensator value is updated in the Compensator
Editor page.

Adjusting the Bandwidth

Because the design requirements include a 0.5-second rise time, try setting the gain so
that the DC crossover frequency is about 3 rad/s. The rationale for setting the bandwidth
to 3 rad/s is that, to a first-order approximation, this should correspond to about a 0.33-
second time constant.



 Bode Diagram Design

4-113

To make the crossover easier to see, select Grid from the right-click menu. This creates a
grid for the Bode magnitude plot. Left-click the Bode magnitude plot and drag the curve
until you see the curve crossing over the 0 dB line (on the y axis) at 3 rad/s. This changes
both the SISO Design Tool display and the Linear System Analyzer step response.

For a crossover at 3 rad/s, the compensator gain should be about 38. By default, the
Graphical Tuning window shows gain and phase margin information in the lower-left
corners of the Bode diagrams. In the Bode magnitude plot, it also tells you if your closed-
loop system is stable or unstable.

This figure shows the Graphical Tuning window.

Adjusting Bandwidth in the Graphical Tuning Window

This plot shows the associated closed-loop step response in the Linear System Analyzer.



4 Designing Compensators

4-114

Closed-Loop Step Response for the DC Motor with a Compensator Gain = 38

The step response shows that the steady-state error and rise time have improved
somewhat, but you must design a more sophisticated controller to meet all the design
specifications, in particular, the steady-state error requirement.

Adding an Integrator

One way to eliminate steady-state error is to add an integrator. To add an integrator:

1 Click the Compensator Editor tab to open the Compensator Editor page.
2 Right-click anywhere in the Dynamics table for the right-click menu, and then

select Add Pole/Zero > Integrator.

The following figures show this process.



 Bode Diagram Design

4-115

Adding an Integrator in the Dynamics Table



4 Designing Compensators

4-116

Editable Integrator Parameters

Notice adding the integrator changed the crossover frequency of the system. Readjust the
compensator gain in the Compensator Editor page to bring the crossover back to 3 rad/
s; the gain should be 99.

After you have added the integrator and readjusted the compensator gain, the Graphical
Tuning window shows a red `x' at the origin of the root locus plot.



 Bode Diagram Design

4-117

Integrator on the Root Locus Plot

The following figure shows the closed-loop step response.



4 Designing Compensators

4-118

Step Response for the DC Motor with an Integrator in the Compensator

Use the right-click menu to show the peak response and rise time (listed under the
Characteristics). The step response is settling around 1, which satisfies the steady-state
error requirement. This is because the integrator forces the system to zero steady-state
error. The figure shows, however, that the peak response is 1.3, or about 30% overshoot,
and that the rise time is roughly 0.4 second. So a compensator consisting of an integrator
and a gain is not enough to satisfy the design requirements, which require that the
overshoot be less than 10%.

Adding a Lead Network

Part of the design requirements is a gain margin of 20 dB or greater and a phase margin
of 40° or more. In the current compensator design, the gain margin is 11.5 dB and the
phase margin is 38.1°, both of which fail to meet the design requirements. The rise
time needs to be shortened while improving the stability margins. One approach is to
increase the gain to speed up the response, but the system is already underdamped,
and increasing the gain will decrease the stability margin as well. You might try



 Bode Diagram Design

4-119

experimenting with the compensator gain to verify this. The only option left is to add
dynamics to the compensator.

One possible solution is to add a lead network to the compensator. To add the lead
network:

1 Click the Compensator Editor tab to open the Compensator Editor page.
2 In the Dynamics table, right-click and then select Add Pole/Zero > Lead.

The following figures show the process of adding a lead network to your controller.

Adding a Lead Network to the DC Motor Compensator on the Compensator Editor Page



4 Designing Compensators

4-120

Lead Network Added

Editable fields are shown in the Edit Selected Dynamics group box (right side of page)
when an item in the Dynamics table has been selected, as shown in the following figure.



 Bode Diagram Design

4-121

For this example, change Real Zero to -7.38 and change Real Pole to -11.1.

You can also add a lead network using the Graphical Tuning window. Right-click in the
Bode graph, select Add Pole/Zero > Lead, place the `x' on the plot where you want to
add the lead network, and then left-click to place it. The Compensator Editor page is
updated to include the new lead network in the Dynamics table.

Your Graphical Tuning window and Linear System Analyzer plots should now look
similar to these.



4 Designing Compensators

4-122

Root Locus, Bode, and Step Response Plots for the DC Motor with a Lead Network



 Bode Diagram Design

4-123

The Step Response plot shows that the rise time is now about 0.4 second and peak
response is 1.24 rad/s (i.e., the overshoot is about 25%). Although the rise time meets
the requirement, the overshoot is still too large, and the stability margins are still
unacceptable, so you must tune the lead parameters.

Moving Compensator Poles and Zeros

To improve the response speed, edit the selected dynamics for the lead network in the
Edit Selected Dynamics group box on the Compensator Editor page.

1 Change the value of the lead network zero (Real Zero) to move it closer to the left-
most (slowest) pole of the DC motor plant (denoted by a blue `x').

2 Change the value of the lead network pole (Real Pole) to move it to the right. Notice
how the gain margin increases (as shown in the Graphical Tuning window) as you do
this.

As you tune these parameters, look at the Linear System Analyzer. You will see the
closed-loop step response alter with each parameter change you make. The following
figure shows the final values for a design that meets the specifications.



4 Designing Compensators

4-124

Graphical Tuning Window with Final Design Parameters for the DC Motor Compensator

The values for this final design are as follows:

• Poles at 0 and -28
• Zero at -4.3
• Gain = 84

Enter these values directly in the Edit Selected Dynamics group box in the
Compensator Editor page, shown as follows (Integrator is already set to 0).



 Bode Diagram Design

4-125

Entering Final Design Parameters on the Compensator Editor Page

The following figure shows the step response for the final compensator design.



4 Designing Compensators

4-126

Step Response for the Final Compensator Design

In the Linear System Analyzer's right-click menu, select Characteristics > Peak
Response and Characteristics > Rise Time to show the peak response and rise time,
respectively. Hover the mouse over the blue dots to show the data markers. The step
response shows that the rise time is 0.45 second, and the peak amplitude is 1.03 rad/s, or
an overshoot of 3%. These results meet the design specifications.

Adding a Notch Filter

If you know that you have disturbances to your system at a particular frequency, you
can use a notch filter to attenuate the gain of the system at that frequency. To add a
notch filter, click the Compensator Editor tab to open the Compensator Editor page.
Right-click in the Dynamics table and select Add Pole/Zero > Notch, as shown next.



 Bode Diagram Design

4-127

Adding a Notch Filter with the Dynamics Right-Click Menu

Default values for the filter are supplied, as shown next.



4 Designing Compensators

4-128

Notch Filter Default Values

The following figure shows the result in the Graphical Tuning window.



 Bode Diagram Design

4-129

Notch Filter Added to the DC Motor Compensator

To see the notch filter parameters in more detail, click the Zoom In

icon on the Graphical Tuning window. In the Open-Loop Bode Editor, press the left
mouse button and drag your mouse to draw a box around the notch filter. When you
release the mouse, the Graphical Tuning window will zoom in on the selected region.

To understand how adjusting the notch filter parameters affects the filter, consider the
notch filter transfer function.

s s

s s

n n

n n

2

1

2

2
2

2

2

2

+ +

+ +

x w w

x w w



4 Designing Compensators

4-130

The three adjustable parameters are ξ1, ξ2, and ωn. The ratio of ξ2/ξ1 sets the depth of the
notch, and ωn is the natural frequency of the notch.

This diagram shows how moving the red ⊗ and black diamonds changes these
parameters, and hence the transfer function of the notch filter.

A Close Look at Notch Filter Parameters

In the Dynamics table on the Compensator Editor page, select the row containing
the newly added notch filter. The editable fields appear in the Edit Selected Dynamics
group box, as shown next.



 Bode Diagram Design

4-131

Editing Notch Filter Parameters

Modifying a Prefilter

You can use the SISO Design Tool to modify the prefilter in your design. Typical prefilter
applications include:

• Achieving (near) feedforward tracking to reduce load on the feedback loop (when
stability margins are poor)

• Filtering out high frequency content in the command (reference) signal to limit
overshoot or to avoid exciting resonant modes of the plant

A common prefilter is a simple lowpass filter that reduces noise in the input signal.

Open the Bode diagram for the prefilter by opening the right-click menu in the
Closed-Loop Bode Editor in the Graphical Tuning window, and then selecting Select
Compensators > F(F).



4 Designing Compensators

4-132

Selecting the Prefilter in the Graphical Tuning Window

For clarity, the previous figure does not show the open-loop Bode diagram for the
compensator (C). To remove the Bode diagram from the Graphical Tuning window, go
to the SISO Design Task node on the Control and Estimation Tools Manager, click the
Graphical Tuning tab, and for Plot 2, Open Loop 1, select Plot type None.



 Bode Diagram Design

4-133

Prefilter Bode Diagram

If you haven't imported a prefilter, the default is a unity gain. You can add poles and
zeros and adjust the gain using the same methods as you did when designing the
compensator (C) on the Compensator Editor page.

A quick way to create a lowpass roll-off filter is to add a pair of complex poles. To do this,
first click the Compensator Editor tab and change the compensator to F. Right-click
in the Dynamics table and select Add Pole/Zero > Complex Pole. Select this line
to show the editable parameters in the Edit Selected Dynamics group box. For this
example, try to place the poles at about 50 rad/s. The following figure shows the poles
added to the prefilter Bode diagram.



4 Designing Compensators

4-134

Adding a Complex Pair of Poles to the Prefilter Bode Diagram

By default, the damping ratio of the complex pair is 1.0, which means that there are two
real-valued poles at about -50 rad/s. The green curve, which represents the prefilter Bode
response, shows the -3 dB point for the roll-off is at about 50 rad/s. The magenta curve,
which represents the closed-loop response from the prefilter to the plant output, shows
that after the -3 dB point, the closed-loop gain rolls off at -40 dB/decade to provide some
noise disturbance rejection.

Importing a Prefilter

As an alternative approach, you can design a prefilter using the Control System Toolbox
commands like ss or tf and then import the design directly into the prefilter. For
example, to create the lowpass filter using zpk, try

prefilt=zpk([],[-35 + 35i, -35 - 35i],1)



 Bode Diagram Design

4-135

and import prefilt by clicking System Data on the Architecture page. This opens
the System Data dialog box. Click Browse to open the Model Import dialog box, as
shown next.

Importing a Prefilter

Select prefilt from the Available Models list and click Import to import the prefilter
model. Click Close to close the Import Model dialog box. After you have imported the
prefilter model, you can modify it using the same methods as described in this chapter for
compensator design.



4 Designing Compensators

4-136

Root Locus Design

In this section...

“What Is Root Locus Design?” on page 4-136
“Root Locus Design for Electrohydraulic Servomechanism” on page 4-137
“Changing the Compensator Gain” on page 4-143
“Adding Poles and Zeros to the Compensator” on page 4-145
“Editing Compensator Pole and Zero Locations” on page 4-150
“Viewing Damping Ratios” on page 4-154

What Is Root Locus Design?

A common technique for meeting design criteria is root locus design. This approach
involves iterating on a design by manipulating the compensator gain, poles, and zeros in
the root locus diagram.

As system parameter k varies over a continuous range of values, the root locus diagram
shows the trajectories of the closed-loop poles of the feedback system. Typically, the
root locus method is used to tune the loop gain of a SISO control system by specifying a
designed set of closed-loop pole locations.

Consider, for example, the tracking loop

where P(s) is the plant, H(s) is the sensor dynamics, and k is a scalar gain to be adjusted.
The closed-loop poles are the roots of

q s k P s H s( ) ( ) ( )= +1



 Root Locus Design

4-137

The root locus technique consists of plotting the closed-loop pole trajectories in the
complex plane as k varies. You can use this plot to identify the gain value associated with
a desired set of closed-loop poles.

The DC motor design example focused on the Bode diagram feature of the SISO Design
Tool. Each of the design options available on the Bode diagram side of the tool have
a counterpart on the root locus side. To demonstrate these techniques, this example
presents an electrohydraulic servomechanism.

The SISO Design Tool's root locus and Bode diagram design tools provide complementary
perspectives on the same design issues; each perspective offers insight into the design
process. Because the SISO Design Tool shows both root locus and Bode diagrams, you can
also choose to combine elements of both perspectives in making your design decisions.

Root Locus Design for Electrohydraulic Servomechanism

A simple version of an electrohydraulic servomechanism model consists of

• A push-pull amplifier (a pair of electromagnets)
• A sliding spool in a vessel of high-pressure hydraulic fluid
• Valve openings in the vessel to allow for fluid to flow
• A central chamber with a piston-driven ram to deliver force to a load
• A symmetrical fluid return vessel

This figure shows a schematic of this servomechanism.



4 Designing Compensators

4-138

Electrohydraulic Servomechanism

The force on the spool is proportional to the current in the electromagnet coil. As the
spool moves, the valve opens, allowing the high-pressure hydraulic fluid to flow through
the chamber. The moving fluid forces the piston to move in the opposite direction of
the spool. Control System Dynamics, by R. N. Clark, (Cambridge University Press,
1996) derives linearized models for the electromagnetic amplifier, the valve spool
dynamics, and the ram dynamics; it also provides a detailed description of this type of
servomechanism.

If you want to use this servomechanism for position control, you can use the input
voltage to the electromagnet to control the ram position. When measurements of the ram
position are available, you can use feedback for the ram position control, as shown in the
following figure.



 Root Locus Design

4-139

Feedback Control Structure for an Electrohydraulic Servomechanism

Your task is to design the compensator, C(s).

Plant Transfer Function

If you have not already done so, type

load ltiexamples

to load a collection of linear models that include Gservo, which is a linearized plant
transfer function for the electrohydraulic position control mechanism. Typing Gservo at
the MATLAB prompt opens the servomechanism (plant) transfer function.

Gservo 

Zero/pole/gain from input "Voltage" to output "Ram position":

          40000000

-----------------------------

s (s+250) (s^2 + 40s + 9e004)

Design Specifications

For this example, you want to design a controller so that the step response of the closed-
loop system meets the following specifications:

• The 2% settling time is less than 0.05 second.
• The maximum overshoot is less than 5%.

The remainder of this topic discusses how to use the SISO Design Tool to design a
controller to meet these specifications.

Opening the SISO Design Tool

Open the SISO Design Tool and import the model by typing

controlSystemDesigner(Gservo)



4 Designing Compensators

4-140

at the MATLAB prompt. This opens the SISO Design Task node in the Control and
Estimation Tools Manager and the Graphical Tuning window with the servomechanism
plant imported.

Graphical Tuning Window Showing the Root Locus and Bode Plots for the Electrohydraulic
Servomechanism Plant

Zooming

Click the Zoom In

icon in the Graphical Tuning window. Press and hold the mouse's left button and drag
the mouse to select a region for zooming. For this example, reduce the root locus region to
about -500 to 500 in both the x- and y-axes. This figure illustrates the zooming in process.



 Root Locus Design

4-141

Zooming In on a Region in the Root Locus Plot

As in the DC motor example, click the Analysis Plots tab to set up loop responses.
Select Plot Type Step for Plot 1, then select plot 1 for Closed-Loop r to y, shown as
follows.



4 Designing Compensators

4-142

Analysis Plots Loop Response Selection

For more information about the Analysis Plots page, see Analysis Plots in "Using the
SISO Design Tool and Linear System Analyzer."

Selecting the plot for Closed-Loop r to y opens the associated Linear System Analyzer.

Your Linear System Analyzer should look like the following figure.



 Root Locus Design

4-143

Linear System Analyzer for the Electrohydraulic Servomechanism

The step response plot shows that the rise time is on the order of 2 seconds, which is
much too slow given the system requirements. The following topics describe how to use
frequency design techniques in the SISO Design Tool to design a compensator that meets
the requirements specified in “Design Specifications” on page 4-139.

Changing the Compensator Gain

The simplest thing to do is change the compensator gain, which by default is unity. You
can change the gain by entering the value directly in the Compensator Editor page.

The following figure shows this procedure.



4 Designing Compensators

4-144

Changing the Compensator Gain in the Root Locus Plot with the Compensator Editor Page

Enter the compensator gain in the text box to the right of the equal sign as shown in the
previous figure. The Graphical Tuning window automatically replots the graphs with the
new gain.

Experiment with different gains and view the closed-loop response in the associated
Linear System Analyzer.

Alternatively, you can change the gain by grabbing the red squares on the root locus plot
in the Graphical Tuning window and moving them along the curve.

Closed-Loop Response

Change the gain to 20 by editing the text box next to the equal sign on the
Compensator Editor page. Notice that the locations of the closed-loop poles on the root
locus are recalculated for the new gain.



 Root Locus Design

4-145

This figure shows the associated closed-loop step response for the gain of 20.

Step Response with the Settling Time for C(s) = 20

In the Linear System Analyzer's right-click menu, select Characteristics > Settling
Time to show the settling for this response. This closed-loop response does not meet the
desired settling time requirement (0.05 seconds or less) and exhibits unwanted ringing.
“Adding Poles and Zeros to the Compensator” on page 4-145 shows how to design a
compensator so that you meet the required specifications.

Adding Poles and Zeros to the Compensator

You may have noticed that increasing the gain makes the system under-damped. Further
increases force the system into instability, so meeting the design requirements with only
a gain in the compensator is not possible.

There are three sets of parameters that specify the compensator: poles, zeros, and gain.
After you have selected the gain, you can add poles or zeros to the compensator.



4 Designing Compensators

4-146

Adding Poles to the Compensator

You can add complex poles on the Compensator Editor page. Click the Compensator
Editor tab, make sure C is selected, and then right click in the Dynamics table. Select
Add Pole/Zero > Complex Pole. Use the Edit Selected Dynamics group box to
modify pole parameters, as shown in the following figure. For more about entering
pole parameters directly, see “Editing Compensator Pole and Zero Locations” on page
4-150.

Adding a Complex Pair of Poles to the Compensator on the Compensator Editor Page

You can also add a complex pole pair directly on the root locus plot using the Graphical
Tuning window. Right-click in the root locus plot and select Add Pole/Zero > Complex
Pole. Click in the root locus plot region where you want to add one of the complex poles.

Complex poles added in this manner are automatically added to the Dynamics table in
the Compensator Editor page.



 Root Locus Design

4-147

After you have added the complex pair of poles, the Linear System Analyzer response
plots change and both the root locus and Bode plots show the new poles.

This figure shows the Graphical Tuning window with the new poles added. For clarity,
you may want to zoom out further, as was done here.

Result of Adding a Complex Pair of Poles to the Compensator

Adding Zeros to the Compensator

You can add zeros in the Dynamics table on the Compensator Editor page or directly
on the Root Locus plot in the Graphical Tuning window.

To add the zeros using the Compensator Editor page, click the Compensator Editor
tab, make sure C is selected, and then right click in the Dynamics table. Select Add
Pole/Zero > Complex Zero. Use the Edit Selected Dynamics group box to modify



4 Designing Compensators

4-148

zero parameters, as shown. For more about entering zero parameters directly, see
“Editing Compensator Pole and Zero Locations” on page 4-150.

Adding Complex Zeros to the Compensator on the Compensator Editor Page

You can also add complex zeros directly on the root locus plot using the Graphical Tuning
window by right-clicking in the root locus plot, selecting Add Pole/Zero > Complex
Zero, and then clicking in the root locus plot region where you want to add one of the
zeros.

Complex zeros added in this manner are automatically added to the Dynamics table on
the Compensator Editor page.

After you have added the complex zeros, the Linear System Analyzer response plots
change and both the root locus and Bode plots show the new zeros.



 Root Locus Design

4-149



4 Designing Compensators

4-150

Electrohydraulic Servomechanism Example with Complex Zeros Added

If your step response is unstable, lower the gain by grabbing a red box in the right-side
plane and moving it into the left-side plane. In this example, the resulting step response
is stable, but it still doesn't meet the design criteria since the 2% settling time is greater
than 0.05 second.

As you can see, the compensator design process can involve some trial and error. You can
try dragging the compensator poles, compensator zeros, or the closed-loop poles around
the root locus until you meet the design criteria.

“Editing Compensator Pole and Zero Locations” on page 4-150, shows you how
to modify the placement of poles and zeros by specifying their numerical values on
the Compensator Editor page. It also presents a solution that meets the design
specifications for the servomechanism example.

Editing Compensator Pole and Zero Locations

A quick way to change poles and zeros is simply to grab them with your mouse and move
them around the root locus plot region. If you want to specify precise numerical values,



 Root Locus Design

4-151

however, you should use the Compensator Editor page in the SISO Design Task node
on the Control and Estimation Tools Manager to change the gain value and the pole and
zero locations of your compensator, as shown.

Using the Compensator Editor Page to Add, Delete, and Move Compensator Poles and Zeros

You can use the Compensator Editor page to

• Add compensator poles and zeros.
• Delete compensator poles and zeros.
• Edit the compensator gain.
• Edit the locations of compensator poles and zeros.

Adding Compensator Poles and Zeros

To add compensator poles or zeros:



4 Designing Compensators

4-152

1 Select the compensator (in this example, C) in the list box to the left of the equal
sign.

2 Right-click in the Dynamics table for the pop-up menu.
3 From the pop-up menu, select Add Pole/Zero > Complex Pole or Add Pole/Zero >

Complex Zero.
4 Use the Edit Selected Dynamics group box to modify pole or zero parameters.

Deleting Compensator Poles and Zeros

To delete compensator poles or zeros:

1 Select the compensator (in this example, C) in the list box to the left of the equal
sign.

2 Select the pole or zero in the Dynamics table that you want to delete.
3 Right-click and select Delete Pole/Zero from the pop-up menu.

Editing Gain, Poles, and Zeros

To edit compensator gain:

1 Select the compensator to edit in the list box to the left of the equal sign in the
Compensator area.

2 Enter the gain value in the text box to the right of the equal sign in the
Compensator area.

To edit pole and zero locations:

1 Select the pole or zero you want to edit in the Dynamics table.
2 Change current values in the Edit Selected Dynamics group box.

For this example, edit the poles to be at −110 ± 140i and the zeros at
−70 ± 270i. Set the compensator gain to 23.3.

Your Graphical Tuning window now looks like this.



 Root Locus Design

4-153

Graphical Tuning Window with the Final Values for the Electrohydraulic Servomechanism
Design Example

To see that this design meets the design requirements, look at the step response of the
closed-loop system.



4 Designing Compensators

4-154

Closed-Loop Step Response for the Final Design of the Electrohydraulic Servomechanism
Example

The step response looks good. The settling time is less than 0.05 second, and the
overshoot is less than 5%. You have met the design specifications.

Viewing Damping Ratios

The Graphical Tuning window provides design requirements that can make it easier to
meet design specifications. If you want to place, for example, a pair of complex poles on
your diagram at a particular damping ratio, select Design Requirements > New from
the right-click menu in the root locus graph.

This opens the New Design Requirement dialog box.



 Root Locus Design

4-155

Applying damping ratio requirements to the root locus plot results in a pair of shaded
rays at the desired slope, as this figure shows.

Root Locus with 0.707 Damping Ratio Lines



4 Designing Compensators

4-156

Try moving the complex pair of poles you added to the design so that they are on the
0.707 damping ratio line. You can experiment with different damping ratios to see the
effect on the design.

If you want to change the damping ratio, select Design Requirements > Edit from the
right-click menu. This opens the Edit Design Requirements dialog box.

Specify the new damping ratio requirement in this dialog box.

An alternate way to adjust a requirement is to left-click the requirement itself to select
it. Two black squares appear on the requirement when it is selected. You can then drag it
with your mouse anywhere in the plot region.

If you want to add a different set of requirements, for example, a settling time
requirement, again select Design Requirements > New from the right-click menu to
open the New Requirements dialog box and choose Settling time from the pull-down
menu. You can have multiple types of design requirements in one plot, or more than one
instance of any type.

The types of requirements available depend on which view you use for your design. See
Design Requirements for a description of all the design requirement options available in
the SISO Design Tool.



 Nichols Plot Design

4-157

Nichols Plot Design
In this section...

“What Is Nichols Plot Design?” on page 4-157
“Nichols Plot Design for DC Motor” on page 4-157
“Opening a Nichols Plot” on page 4-158
“Adjusting the Compensator Gain” on page 4-159
“Adding an Integrator” on page 4-161
“Adding a Lead Network” on page 4-163

What Is Nichols Plot Design?

An alternative method for designing compensators is to use the Nichols plot, which
combines gain and phase information in a single plot. The combination of the two is
useful when you are designing to gain and phase margin specifications.

You can design compensators with the SISO Design Tool by using Nichols plot
techniques. This topic repeats the DC motor compensator design presented in “Bode
Diagram Design for DC Motor” on page 4-110, only this time the focus is on Nichols plot
techniques. The design strategy, however, is the same.

1 Adjust the compensator gain to improve the rise time.
2 Add an integrator to eliminate steady-state error.
3 Add a lead network to further improve the rise time while minimizing overshoot.

Nichols Plot Design for DC Motor

From “SISO Example: The DC Motor” on page 2-3, the transfer function of the DC motor
is

Transfer function:

       1.5

------------------

s^2 + 14 s + 40.02

This example uses the design criteria specified in “Design Specifications” on page 4-139:

• Rise time of less than 0.5 second
• Steady-state error of less than 5%



4 Designing Compensators

4-158

• Overshoot of less than 10%
• Gain margin greater than 20 dB
• Phase margin greater than 40 degrees

Opening a Nichols Plot

To open the SISO Design Tool with a Bode diagram and a Nichols plot, use these
commands:

load ltiexamples

controlSystemDesigner({'bode','nichols'},sys_dc)

The SISO Design Task node on the Control and Estimation Tools Manager opens and
the Graphical Tuning window with sys_dc opens.

Graphical Tuning Window with a Bode Diagram and a Nichols Plot



 Nichols Plot Design

4-159

Adjusting the Compensator Gain

You can adjust the compensator gain by entering a value in the Compensator Editor
page.

1 Click the Compensator Editor tab to open the Compensator Editor page.
2 Select C from the compensator selection list.
3 In the text box to the right of the equal sign in the Compensator area, enter the

gain amount and press Enter.

Adjusting Compensator Gain in the Compensator Editor Page

In this example, the new gain is 112.

You can also adjust the compensator gain in the Graphical Tuning window by moving
the Nichols curve up and down with your mouse. To do this, place your mouse over the



4 Designing Compensators

4-160

curve. The cursor turns into a hand. Left-click and move the curve up to increase the
gain. When you adjust the gain in this manner, the compensator gain is automatically
updated in the Compensator Editor page.

Click the Analysis Plots tab to set the analysis plots. Select Plot Type Step for Plot 1,
and then select plot 1 for Closed-Loop r to y, as shown in the following figure, to
open a linked Linear System Analyzer with the closed-loop step response from reference
signal r to output signal y.

Analysis Plots Loop Response Selection



 Nichols Plot Design

4-161

Linear System Analyzer Step Response for Compensator Gain = 112

The rise time is quite fast, about 0.15 second, but the overshoot is 18.4% and the steady-
state is about 0.82.

Adding an Integrator

One approach to eliminating the steady-state error is to add an integrator.

To add an integrator:

1 Click the Compensator Editor tab to open the Compensator Editor page.
2 Right-click in the Dynamics table and select Add Pole/Zero > Integrator.

This figure shows the process.



4 Designing Compensators

4-162

Adding an Integrator in the Dynamics Table

You can also add an integrator by selecting Add Pole/Zero > Integrator from the
right-click menu in the Graphical Tuning window. When you add the integrator in this
manner, it is automatically added to the Dynamics table on the Compensator Editor
page.

Adding an integrator changes the gain margin from infinity to 10.5 dB. Since the gain
and phase margins are now both finite, the Nichols plot shows a vertical line for the gain
margin and a horizontal line for the phase margin.

The linked Linear System Analyzer automatically updates to show the new response.



 Nichols Plot Design

4-163

Step Response for a Compensator Consisting of a Gain and an Integrator

The steady-state value is now 1, which means the steady-state error has been eliminated,
but the overshoot is 34% and the rise time is about 0.7 second. You must do more work to
create a good design.

Adding a Lead Network

Improving the rise time requires that you increase the compensator gain, but increasing
the gain further deteriorates the gain and phase margins while increasing the overshoot.
You need to add a lead network to selectively raise the gain about the frequency
crossover. To add the lead network:

1 Click the Compensator Editor tab to open the Compensator Editor page.
2 Right-click in the Dynamics table and select Add Pole/Zero > Lead.

This figure shows the process of adding a lead network on the Compensator Editor
page.



4 Designing Compensators

4-164

You can also add a lead network in the Graphical Tuning window. To add a lead network,
select Add Pole/Zero > Lead from the right-click menu. Your cursor turns into a red
`x'. Left-click along the Nichols curve to add the lead network. To move the lead network
along the curve, left-click the pole or zero and drag.

You can track the pole's movement in the status bar at the bottom of the Graphical
Tuning window. The status bar tells you the current location of the pole.

Using the Compensator Editor page, move the lead network pole to -28 and the zero to
-4.3 for this design. The zero should be almost on top of the right-most pole of the plant
(the DC motor model). Adjust the compensator gain to 84. This gives the final design.



 Nichols Plot Design

4-165

Final Nichols Plot Design for the DC Motor Compensator

The gain and phase margins are 21.9 dB and 65.7 degrees, respectively. Inspect the
closed-loop step response to see if the rise time and overshoot requirements are met.



4 Designing Compensators

4-166

Closed-Loop Step Response for the Final Compensator Design

As this figure shows, the rise time is 0.448 second, and the overshoot is a little over 3%.
This satisfies the rest of the design requirements.



 Automated Tuning Design

4-167

Automated Tuning Design

In this section...

“Supported Automated Tuning Methods” on page 4-167
“Loading and Displaying the DC Motor Example for Automated Tuning” on page
4-167
“Applying Automated PID Tuning” on page 4-169

Supported Automated Tuning Methods

The SISO Design Tool simplifies the task of designing and tuning compensators. There
are five automated tuning methods in the SISO Design Tool to help you design an initial
stabilizing compensator for a SISO loop on-the-fly or refine existing compensator design
so that it satisfies a certain user-defined design specification.

The available design methods are:

• Optimization-based tuning
• PID tuning
• Internal Model Control (IMC) tuning
• LQG synthesis
• Loop shaping

For a detailed discussion of these, see “Automated Tuning”.

Loading and Displaying the DC Motor Example for Automated Tuning

Follow these steps to load and display the DC Motor example for automated tuning:

1 If you have not yet built the DC Motor example, type

load ltiexamples

2 To open the SISO Design Tool and import the DC motor, type

controlSystemDesigner(sys_dc)



4 Designing Compensators

4-168

at the MATLAB prompt. This opens both the SISO Design Task node on the
Control and Estimation Tools Manager and the Graphical Tuning window with
sys_dc loaded.

3 Click the Analysis Plots tab to set the analysis plots. Select the plot type as Step
for Plot 1. Then, check the box for plot 1 to the left of Closed-Loop r to y, as
shown in the following figure, to open a linked Linear System Analyzer with the
closed-loop step response from reference signal r to output signal y.

4 In the Linear System Analyzer that appears, use the right-click menu to add rise
time and steady state values to your plot.



 Automated Tuning Design

4-169

Step Response When Compensator = 1

Note that by default, the compensator is 1 and unit negative feedback is used (see
Architecture). When a unit step is applied to the setpoint change, the steady state value
of the system output is 0.0361, which is far from the setpoint, and its rise time is 0.589.

Applying Automated PID Tuning

1 Click the Automated Tuning tab.
2 Select PID tuning from the Design method list.
3 Leave C as the default compensator.



4 Designing Compensators

4-170

Design a Proportional-Only Controller

1 In the Tuning method menu, select Classical design formulas.
2 In the Design options area, select P for proportional-only control (C = Kp).

3 In the Formula menu, select Ziegler-Nichols step response.

Note: For more information about the automated tuning methods and formulas, see
“Automated Tuning”.

4 Click Update Compensator. The Linear System Analyzer is updated with the
application of PID automated tuning with a proportional-only compensator. The
compensator value is now 203.75.



 Automated Tuning Design

4-171

Note that the rise time is reduced to 0.0769 seconds, compared with 0.589 when C = 1.
However, the steady state value of 0.885 can still be improved by setting the automated
tuning controller type to PI.

Designing a Proportional-Integral Controller

1 In the Design options area, select PI for proportional-integral control

( C K
K

s
p

I
= + ).

2 In the Formula menu, select Ziegler-Nichols step response.
3 Click Update Compensator. The Linear System Analyzer is updated with the

application of PID automated tuning with a proportional-integral compensator. The

compensator value is now 1448 8
1 0 13

.
( . )

¥
+ s

s

.



4 Designing Compensators

4-172

Now the steady state value is 1. Applying automated tuning using PID tuning set to PI
guarantees zero offset.

This compensator design has a high degree of overshoot and ringdown. For further
improvements on the result, try the Robust response time tuning method.



 Multi-Loop Compensator Design

4-173

Multi-Loop Compensator Design

In this section...

“When to Use Multi-Loop Compensator Design” on page 4-173
“Workflow for Multi-Loop Compensator Design” on page 4-173
“Position Control of a DC Motor” on page 4-173

When to Use Multi-Loop Compensator Design

In many applications, a single-loop design is not feasible. If you have a design with
inner loops, you can use the SISO Design Tool to design a compensator that meets your
specifications.

Workflow for Multi-Loop Compensator Design

A typical procedure is to design the innermost loop on its own. You can use the SISO
Design Tool to isolate the design on individual loops. When used this way, the tool
ignores outer loop dynamics. Once the inner loop is designed, you can move on to
the design of the outer loop compensator to achieve the desired closed-loop behavior.
“Position Control of a DC Motor” on page 4-173 shows an example of this procedure.

Position Control of a DC Motor

Instead of controlling the angular rate of a DC motor, this example develops a control law
for controlling the position (angle) of the motor shaft. The block diagram of the DC motor,
as shown in the following figure, has an integrator added as an outer loop.



4 Designing Compensators

4-174

Block Diagram of the Position-Controlled DC Motor

The design goal for this example is the minimize the closed-loop step response settling
time while maintaining an inner loop phase margin of at least 65º with maximum
bandwidth.

For details on how to derive state-space and transfer function representations of a DC
motor, see “SISO Example: The DC Motor” on page 2-3.

Designing a multi-loop compensator for a DC motor involves the following steps:

• “Developing a Mathematical Model of the DC Motor” on page 4-174
• “Selecting the Architecture and Importing the Model” on page 4-176
• “Designing the Inner Loop” on page 4-178
• “Tuning the Outer Loop” on page 4-180
• “Validating the Design with the Linear System Analyzer for SISO Design” on page

4-182

Developing a Mathematical Model of the DC Motor

These are the relevant physical constants:

R=2.0            % Ohms

L = 0.5          % Henrys

Km=0.1; Kb = 0.1 % Torque and back emf constants



 Multi-Loop Compensator Design

4-175

Kf= 0.2;         % Nms

J = 0.02         % kg.m^2/s^2

First, construct a state-space model of the DC motor with one input, the applied voltage
(Va). The output is the angular rate w.

h1 = tf(Km,[L,R]); % Armature

h2 = tf(1,[J, Kf]) % Equation of motion

dcm = ss(h2) *h1; % w = h2 cascaded with h1

dcm = feedback(dcm, Kb, 1, 1);% Closes back emf loop

Adapting the Model to SISO Tool Architecture

One possible choice for your architecture is this multi-loop configuration.

Comparing this architecture to the original Block Diagram of the Position-Controlled
DC Motor, it is evident that the two do not match. Using block diagram algebra, you can
manipulate the original figure into one that fits this architecture.

Position-Controlled DC Motor Rearchitected



4 Designing Compensators

4-176

To create this representation, add an integrator to get Θ, the angular displacement, and
a pure differentiator in the inner loop's return path. The channel from Va to w is dcm(1),
making it the appropriate channel for adding the integrator.

G = dcm*tf(1,[1,0]) % Motor with integrator; output is theta.

C2 = tf('s') % Differentiator

Selecting the Architecture and Importing the Model

Open the SISO Design Tool by typing

controlSystemDesigner

at the MATLAB prompt. Once the Controls & Estimation Tools Manager opens, click
Control Architecture on the Architecture page. Select the multi-loop configuration
with two compensators, C1 in the forward path and C2 in the inner feedback loop —
located in the lower-right corner.

Control Architecture Window

Next, import the model parameters by clicking System Data on the Architecture tab.
This opens the System Data dialog box. Set G to G from the workspace. Assume a perfect
sensor and set H to 1. C1 and C2 are the gains you will use to design a compensator. Set
C1 to 1 and C2 to C2 from the workspace. Your System Data dialog box should look like
this.



 Multi-Loop Compensator Design

4-177

Selecting SISO Design Graphical Editor Views

Once you have selected the multi-loop architecture, click the Graphical Tuning tab. Set
the plot types as follows:

1 Open-Loop 1 to "Root-Locus"
2 Open-Loop 2 to "Open-Loop Bode"

Your Graphical Tuning page should look like this.

Graphical Tuning Page Set for DC Motor Multi-Loop Design



4 Designing Compensators

4-178

Click Show Design Plot to see the SISO Design Graphical editor.

Designing the Inner Loop

You are now in a position to do the design. Start with the design of the inner loop. To do
this, go to the Architecture page and remove the effects of the outer loop by following
these steps:

1 Click Loop Configuration. This opens the Open-Loop Configuration dialog box.
2 From the pull-down menu, select Open-Loop Output of C2.
3 Click Highlight feedback loop. This opens a figure of the control architecture

showing the loop configuration.



 Multi-Loop Compensator Design

4-179

Notice how the C1 piece of the compensator and the outer loop are grayed out. This
means that they will have no effect on the inner loop at this time.

Next, turn to the SISO Design Graphical editor. Use the Bode plot for open loop 2 (the
inner loop) and increase the gain to maximize bandwidth subject to a 65º phase margin.
This turns out to be a gain of about 16.1 for C2.



4 Designing Compensators

4-180

Setting the Inner Loop Gain

This finishes the design of the inner loop.

Tuning the Outer Loop

The goal in designing the outer loop is to minimize the settling time. Note that the outer
loop can "see" the inner loop, so that the tuning affects the entire system. Follow these
steps:

1 Go to the Analysis Plot tab in the Controls & Estimation Tools Manager. Select the
Closed-Loop r to y check box.

2 Select Step from the Plot 1 pull-down menu. This opens the Linear System
Analyzer for SISO Design.

3 Right-click in the step response plot and select Characteristics>Settling Time.
Your Linear System Analyzer should look like this.



 Multi-Loop Compensator Design

4-181

Initial Step Response with Settling Time

The settling time is about 79 s.

Return to the SISO Design Graphical editor and increase the gain of C1 in the root locus
plot. At a gain of about 90.2, you will see the complex pair of poles move toward a slower
time constant as the third pole moves toward a faster one. You can view the trade-off in
the Linear System Analyzer for SISO Design. As the gain is changed, the closed-loop step
response changes.

The 90.2 gain seems to yield a good compromise between rise and settling time.



4 Designing Compensators

4-182

Final Gain Choice for C1

Validating the Design with the Linear System Analyzer for SISO Design

Turning back to the Linear System Analyzer for SISO Design, it is evident that the
settling time is now much lower than the original 78.9 s.



 Multi-Loop Compensator Design

4-183

With a settling time of about 0.8 s, and a phase margin of 65º in the inner loop, the
design is complete.



4 Designing Compensators

4-184

Control Design Analysis of Multiple Models

In this section...

“Multiple Models Represent System Variations” on page 4-184
“Control Design Analysis Using the SISO Design Tool” on page 4-184
“Specifying a Nominal Model” on page 4-185
“Frequency Grid for Multimodel Computations” on page 4-187
“How to Analyze the Controller Design for Multiple Models” on page 4-188

Multiple Models Represent System Variations

Typically, the dynamics of a system are not exactly known and may vary. For example,
system dynamics can vary because of:

• Parameter value variations caused by manufacturing tolerances. For example, the
resistance value of a resistor is typically within a range about the nominal value, 5 Ω
+/– 5%.

• Operating conditions. For example, aircraft dynamics change based on its altitude
and speed.

The controller you design for such a system must satisfy design requirements for
dynamics of all models.

Control Design Analysis Using the SISO Design Tool

To design a controller for a system whose dynamics vary, you sample the variations,
create an LTI model for each sample and use the set of models to build an array of LTI
models. Then, design the controller for a representative model from the array.

Control design analysis of multiple models in the SISO Design Tool requires you to
specify either the plant G or sensor H or both as row or column arrays of LTI models. If
both G and H are arrays, their sizes must match.

Use the SISO Design Tool to:

1 Choose a nominal model from the array of LTI models.



 Control Design Analysis of Multiple Models

4-185

2 (Optional) Specify a frequency grid for multimodel computations.
3 Design a controller for the nominal model.
4 Analyze if the controller meets the design requirements for all models in the array.

If the controller design does not meet design requirements on all the models, specify a
different nominal model and redesign the controller. For more information, see “How to
Analyze the Controller Design for Multiple Models” on page 4-188.

Specifying a Nominal Model

• “What Is a Nominal Model?” on page 4-185
• “How Is a Nominal Model Computed?” on page 4-185
• “Criteria for Choosing a Nominal Model” on page 4-187

What Is a Nominal Model?

The nominal model is a representative model in the array of LTI models that you use to
design the controller or for loop shaping in the SISO Design Tool.

You use the design and analysis plots to visualize and analyze the effect of the controller
on the remaining plants in the array.

How Is a Nominal Model Computed?

The following table summarizes how the software computes the nominal model when the
plant G and sensor H are arrays of LTI models in a control architecture.

Array of LTI Models Nominal Model

Both G and H

Note: The sizes of both arrays
must match.

• By default, computed using the first element in both
arrays.

• For a different index, computed using the specified
index in both arrays.

• The same index is also used when you import new
arrays in the SISO Design Tool.

• If the specified index does not exist, the nominal
model index reverts to a value you previously
specified or the first element.



4 Designing Compensators

4-186

Array of LTI Models Nominal Model

Only G or H Uses scalar expansion for the specified index and G or H
value.

For example, in the following default control architecture:

if

• G and H are arrays of LTI models of length 3
• Nominal model index is 2

the software uses the second element in both the arrays to compute the nominal model:

2

2

Nominal Model

r y

The nominal response from r to y is:

T
CG

CG H

nom

nom nom

=

+1
,

where Gnom = G2, Hnom = H2 and GnomHnom is the open-loop response.

The software also computes and plots the responses showing the effect of C on the
remaining pairs of plant and sensor combinations—G1H1 and G3H3.



 Control Design Analysis of Multiple Models

4-187

If only G is an array of LTI models, and the specified nominal model is 2, then the control
architecture for nominal response is:

2

Nominal Model

r y

The software also computes and plots the responses showing the effect of C for the
remaining pairs of plant indices and sensor—G1H and G3H.

Criteria for Choosing a Nominal Model

The nominal model is the model that you design a controller for. Typically, you choose a
model that:

• Represents an average of the multiple models. For example, the open-loop response of
the model lies midway among the responses of all models in the array.

• Represents a worst-case plant.
• Lies closet to the stability point.
• You want to work with for control design.

Tip You can plot and analyze the open-loop dynamics of the system on a Bode plot to
determine which model to choose as nominal.

If the controller design for the nominal model does not meet the design requirements
on the remaining plants in the array, you can specify a different nominal model and
redesign the controller. See “How to Analyze the Controller Design for Multiple Models”
on page 4-188 for more information.

Frequency Grid for Multimodel Computations

• “Algorithm for Frequency Grid Computation” on page 4-188
• “When to Specify Custom Frequency Grid” on page 4-188



4 Designing Compensators

4-188

Algorithm for Frequency Grid Computation

The frequency response of a system is computed at points in the frequency, called
frequency grid.

To compute the frequency grid, the software computes a logarithmic equally spaced grid,
based on the dynamics (dynamic range) of each model in the array.

When to Specify Custom Frequency Grid

You can specify a custom frequency grid if:

• The automatic grid does not capture the system dynamics sufficiently.

This happens because the grid is not sufficiently dense in a particular frequency
range. For example, for an underdamped systems the model response shows sharp
and tall peaks. Examine the analysis plots to verify if these dynamics are captured
in the response. If the response does not capture these dynamics, specify a denser
gridding.

• The grid computed automatically has more points in the response than you require.
• You are interested only in a specific frequency range in the response.

Tip Specifying a less dense grid reduces the number of computations and is less
expensive computationally.

For more information, see “How to Analyze the Controller Design for Multiple Models” on
page 4-188.

How to Analyze the Controller Design for Multiple Models

Prerequisites

An array of LTI models that model variations in the plant G, sensor H or both. G and H
must be row or column vectors of the same length.

Obtain the array using one of the following methods:

• Create multiple LTI models using the tf, ss, zpk, or frd commands. For example:

% Specify system parameters.



 Control Design Analysis of Multiple Models

4-189

m = 3;

b = 0.5;

k = 8:1:10;

T = 0.1:.05:.2;

% Create an array of LTI models to model plant (G) variations.

for ct = 1:length(k);

    G(:,:,ct) = tf(1,[m,b,k(ct)]);

end

% Create an array of LTI models to model sensor (H) variations.

for ct = 1:length(T);

    H(:,:,ct) = tf(1,[1/T(ct), 1]);

end

In this case, G and H each contain 3 elements.
• Create an array of LTI models using the stack command. For example:

% m = 3, b = 0.5, k = 8:1:10.

% Create an array of LTI models to model plant (G) variations.

G1 = tf(1, [1 1 8]);

G2 = tf(1, [1 1 9]);

G3 = tf(1, [1 1 10]);

% Create an array of LTI models

G = stack(1, G1, G2, G3);

 % Create an array of LTI models to model sensor (H) variations.

H1 = tf(1,[1/0.1, 1]);

H2 = tf(1,[1/0.15, 1]);

H3 = tf(1,[1/0.2, 1]);

% Create array of LTI models.

H=stack(1,H1,H2,H3);

• (Requires Simulink Control Design software) Perform batch linearizations at
multiple operating points. Then export the computed LTI models to create an array
of LTI models. See the example Reference Tracking of a DC Motor with Parameter
Variations.

• (Requires Simulink Control Design and Robust Control Toolbox™ software) Specify a
core Simulink block to linearize to an uncertain state-space (uss or ufrd) model. See
“Specify Uncertain Linearization for Core or Custom Simulink Blocks”.

• (Requires Robust Control Toolbox software) Compute uncertain state-space (uss)
models from Simulink models. Then use usubs or usample to create an array of LTI
models. See “Obtain Uncertain State-Space Model from Simulink Model”.

http://www.mathworks.com/products/simcontrol/


4 Designing Compensators

4-190

1 Open SISO Design Tool.

controlSystemDesigner(G,1,H) 

This command opens the following window.

By default, the combination of the first plant and sensor in the arrays is the nominal
model on which you perform the control design. For more information, see “How Is a
Nominal Model Computed?” on page 4-185.

The Graphical Tuning window, which opens with the SISO Design Tool, shows the
individual responses of all models in the arrays.



 Control Design Analysis of Multiple Models

4-191

Tip You can view the envelope of the Bode response instead by right-clicking the plot
and selecting Multimodel Display > Bounds. See “Using the Graphical Tuning
Window” on page 4-99 for more information.

Alternatively, to view the responses of all models in the arrays:



4 Designing Compensators

4-192

• Open an empty SISO Design Tool by typing controlSystemDesigner and
import G and H. See “Importing Models into the SISO Design Tool” on page 4-87
for more information.

• Configure SISO Design Tool using sisoinit with the arrays of LTI models and
then open the SISO Design Tool.

2 Configure the analysis plots in the Analysis Plots tab in Control and Estimation
Tools Manager.

By default, the plots show only the nominal response.

Right-click the plot, and select Multimodel Configuration > Bounds or
Multimodel Configuration > Individual Responses to see the individual
response or envelope of all models, respectively.



 Control Design Analysis of Multiple Models

4-193

See “Analysis Plots for Loop Responses” on page 4-93 for more information.
3 (Optional) If you want to specify a different nominal plant, click Multimodel

Configuration in the Architecture tab.

The Multimodel Configuration Dialog window opens.



4 Designing Compensators

4-194

Specify a different nominal model in Nominal Model Index field. If you specify an
index value greater than the maximum index of the arrays, the field reverts back to
a value you specified previously or 1.

Tip You can keep the Multimodel Configuration Dialog window open as you are
following the next steps.

4 (Optional) If the grid computed by Auto select is not dense enough to capture all
system dynamics, specify a different frequency grid.

a Select the User specified frequencies (rad/sec) option, and enter the
frequency grid in log scale.

b Click Apply.

For more information, see “Frequency Grid for Multimodel Computations” on page
4-187.

5 Design the controller for the nominal plant using graphical or automated tuning.

For more information on designing a controller, see the following topics:



 Control Design Analysis of Multiple Models

4-195

• “Bode Diagram Design” on page 4-110
• “Root Locus Design” on page 4-136
• “Nichols Plot Design” on page 4-157
• “Automated Tuning Design” on page 4-167

As you design the controller, use the design and analysis plots analyze to analyze the
controller's effects on the remaining models in the array.

6 (Optional) If the controller design for the nominal model does not meet the design
requirements for the remaining models in the array:

a Specify a different nominal model in the Nominal Model Index field of the
Multimodel Configuration Dialog window.

The design and analysis plots update to show the updated nominal model. For
example, for a nominal model value of 2, the plots appear as shown in the next
figures.



4 Designing Compensators

4-196



 Control Design Analysis of Multiple Models

4-197

b Redesign the controller iteratively.



4 Designing Compensators

4-198

Functions for Compensator Design

In this section...

“When to Use Functions for Compensator Design” on page 4-198
“Root Locus Design” on page 4-198
“Pole Placement” on page 4-199
“Linear-Quadratic-Gaussian (LQG) Design” on page 4-202
“Design an LQG Regulator” on page 4-211
“Design an LQG Servo Controller” on page 4-214
“Design an LQR Servo Controller in Simulink” on page 4-217

When to Use Functions for Compensator Design

The term control system design refers to the process of selecting feedback gains that meet
design specifications in a closed-loop control system. Most design methods are iterative,
combining parameter selection with analysis, simulation, and insight into the dynamics
of the plant.

In addition to the SISO Design Tool, you can use functions for a broader range of control
applications, including

• Classical SISO design
• Modern MIMO design techniques such as pole placement and linear quadratic

Gaussian (LQG) methods

Root Locus Design

The following table summarizes the functions for designing compensators using root
locus design techniques.

Function Description

pzmap Pole-zero map
rlocus Evans root locus plot
sgrid Continuous w z

n
,  grid for root locus plots



 Functions for Compensator Design

4-199

Function Description

controlSystemDesignerSISO Design GUI
zgrid Discrete w z

n
,  grid for root locus plots

Pole Placement

The closed-loop pole locations have a direct impact on time response characteristics such
as rise time, settling time, and transient oscillations. Root locus uses compensator gains
to move closed-loop poles to achieve design specifications for SISO systems. You can,
however, use state-space techniques to assign closed-loop poles. This design technique is
known as pole placement, which differs from root locus in the following ways:

• Using pole placement techniques, you can design dynamic compensators.
• Pole placement techniques are applicable to MIMO systems.

Pole placement requires a state-space model of the system (use ss to convert other model
formats to state space). In continuous time, such models are of the form

&x Ax Bu

y Cx Du

= +

= +

where u is the vector of control inputs, x is the state vector, and y is the vector of
measurements.

State-Feedback Gain Selection

Under state feedback u Kx= - , the closed-loop dynamics are given by

&x A BK x= -( )

and the closed-loop poles are the eigenvalues of A-BK. Using the place function, you can
compute a gain matrix K that assigns these poles to any desired locations in the complex
plane (provided that (A,B) is controllable).

For example, for state matrices A and B, and vector p that contains the desired locations
of the closed loop poles,



4 Designing Compensators

4-200

K = place(A,B,p);

computes an appropriate gain matrix K.

State Estimator Design

You cannot implement the state-feedback law u Kx= -  unless the full state x is
measured. However, you can construct a state estimate x  such that the law u K= - x

retains similar pole assignment and closed-loop properties. You can achieve this by
designing a state estimator (or observer) of the form

&x x x= + + - -A Bu L y C Du( )

The estimator poles are the eigenvalues of A-LC, which can be arbitrarily assigned
by proper selection of the estimator gain matrix L, provided that (C, A) is observable.
Generally, the estimator dynamics should be faster than the controller dynamics
(eigenvalues of A-BK).

Use the place function to calculate the L matrix

L = place(A',C',q).'

where A and C are the state and output matrices, and q is the vector containing the
desired closed-loop poles for the observer.

Replacing x by its estimate x  in u Kx= -  yields the dynamic output-feedback
compensator

&x x

x

= - - - +

= -

[ ( ) ]A LC B LD K Ly

u K

Note that the resulting closed-loop dynamics are

&

&

x

e

A BK BK

A LC

x

e
e x

È

Î
Í

˘

˚
˙ =

-

-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ = -

0
, x

Hence, you actually assign all closed-loop poles by independently placing the eigenvalues
of A-BK and A-LC.



 Functions for Compensator Design

4-201

Example

Given a continuous-time state-space model

sys_pp = ss(A,B,C,D) 

with seven outputs and four inputs, suppose you have designed

• A state-feedback controller gain K using inputs 1, 2, and 4 of the plant as control
inputs

• A state estimator with gain L using outputs 4, 7, and 1 of the plant as sensors
• Input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the dynamic compensator
using this code:

controls = [1,2,4];

sensors = [4,7,1];

known = [3];

regulator = reg(sys_pp,K,L,sensors,known,controls)

Pole Placement Tools

You can use functions to

• Compute gain matrices K and L that achieve the desired closed-loop pole locations.
• Form the state estimator and dynamic compensator using these gains.

The following table summarizes the functions for pole placement.

Functions Description

estim Form state estimator given estimator gain
place Pole placement design
reg Form output-feedback compensator given state-feedback and

estimator gains

Caution

Pole placement can be badly conditioned if you choose unrealistic pole locations. In
particular, you should avoid:

• Placing multiple poles at the same location.



4 Designing Compensators

4-202

• Moving poles that are weakly controllable or observable. This typically requires high
gain, which in turn makes the entire closed-loop eigenstructure very sensitive to
perturbation.

Linear-Quadratic-Gaussian (LQG) Design

Linear-quadratic-Gaussian (LQG) control is a modern state-space technique for
designing optimal dynamic regulators and servo controllers with integral action (also
known as set point trackers). This technique allows you to trade off regulation/tracker
performance and control effort, and to take into account process disturbances and
measurement noise.

To design LQG regulators and set point trackers, you perform the following steps:

1 Construct the LQ-optimal gain.
2 Construct a Kalman filter (state estimator).
3 Form the LQG design by connecting the LQ-optimal gain and the Kalman filter.

For more information about using LQG design to create LQG regulators , see “Linear-
Quadratic-Gaussian (LQG) Design for Regulation” on page 4-202.

For more information about using LQG design to create LQG servo controllers, see
“Linear-Quadratic-Gaussian (LQG) Design of Servo Controller with Integral Action” on
page 4-207.

These topics focus on the continuous-time case. For information about discrete-time LQG
design, see the dlqr and kalman reference pages.

Linear-Quadratic-Gaussian (LQG) Design for Regulation

You can design an LQG regulator to regulate the output y around zero in the following
model.

Plant

w v

y

uy
-K

u

LQG Regulator

Kalman
Filter



 Functions for Compensator Design

4-203

The plant in this model experiences disturbances (process noise) w and is driven by
controls u. The regulator relies on the noisy measurements y to generate these controls.
The plant state and measurement equations take the form of

&x Ax Bu Gw

y Cx Du Hw v

= + +

= + + +

and both w and v are modeled as white noise.

Note: LQG design requires a state-space model of the plant. You can use ss to convert
other model formats to state space.

To design LQG regulators, you can use the design techniques shown in the following
table.

To design an LQG regulator using... Use the following commands:

A quick, one-step design technique when the
following is true:

• G is an identity matrix and H = 0.
• All known (deterministic) inputs are

control inputs and all outputs are
measured.

• Integrator states are weighted
independently of states of plants and
control inputs.

• The state estimator of the Kalman filter is
based on ˆ |x n n -[ ]1 .

lqg

For more information, see the lqg
reference page.

A more flexible, three-step design technique
that allows you to specify:

• Arbitrary G and H.
• Known (deterministic) inputs that are

not controls and/or outputs that are not
measured.

lqr, kalman, and lqgreg

For more information, see

• “Constructing the Optimal State-
Feedback Gain for Regulation” on
page 4-204



4 Designing Compensators

4-204

To design an LQG regulator using... Use the following commands:

• A flexible weighting scheme for integrator
states, plant states, and controls.

• The state estimator of the Kalman filter
based on either ˆ |x n n[ ]  or ˆ |x n n -[ ]1 .

• “Constructing the Kalman State
Estimator” on page 4-204

• “Forming the LQG Regulator” on
page 4-206

Constructing the Optimal State-Feedback Gain for Regulation

You construct the LQ-optimal gain from the following elements:

• State-space system matrices
• Weighting matrices Q, R, and N, which define the tradeoff between regulation

performance (how fast x(t) goes to zero) and control effort.

To construct the optimal gain, type the following command:

K= lqr(A,B,Q,R,N)

This command computes the optimal gain matrix K, for which the state feedback law
u Kx= -  minimizes the following quadratic cost function for continuous time:

J u x Qx x Nu u Ru dtT T T
( ) { }= + +

•

Ú 2
0

The software computes the gain matrix K by solving an algebraic Riccati equation.

For information about constructing LQ-optimal gain, including the cost function that the
software minimizes for discrete time, see the lqr reference page.

Constructing the Kalman State Estimator

You need a Kalman state estimator for LQG regulation and servo control because you
cannot implement optimal LQ-optimal state feedback without full state measurement.

You construct the state estimate x̂  such that u Kx= - ˆ  remains optimal for the output-
feedback problem. You construct the Kalman state estimator gain from the following
elements:



 Functions for Compensator Design

4-205

• State-space plant model sys
• Noise covariance data, Qn, Rn, and Nn

The following figure shows the required dimensions for Qn, Rn, and Nn. If Nn is 0, you
can omit it.

Required Dimensions for Qn, Rn, and Nn

Note: You construct the Kalman state estimator in the same way for both regulation and
servo control.

To construct the Kalman state estimator, type the following command:

[kest,L,P] = kalman(sys,Qn,Rn,Nn);

This command computes a Kalman state estimator, kest with the following plant
equations:

&x Ax Bu Gw

y Cx Du Hw v

= + +

= + + +

where w and v are modeled as white noise. L is the Kalman gain and P the covariance
matrix.

The software generates this state estimate using the Kalman filter

d

dt
x Ax Bu L y Cx Duˆ ˆ ( ˆ )= + + - -



4 Designing Compensators

4-206

with inputs u (controls) and y (measurements). The noise covariance data

E ww Q E vv R E wv NT
n

T
n

T
n( ) , ( ) , ( )= = =

determines the Kalman gain L through an algebraic Riccati equation.

The Kalman filter is an optimal estimator when dealing with Gaussian white noise.
Specifically, it minimizes the asymptotic covariance

    lim
t→∞

E x x x x
T−( ) −( )( )ˆ ˆ

of the estimation error x x- ˆ .

y

u Kalman
Estimator

x

For more information, see the kalman reference page. For a complete example of a
Kalman filter implementation, see Kalman Filtering.

Forming the LQG Regulator

To form the LQG regulator, connect the Kalman filter kest and LQ-optimal gain K by
typing the following command:

regulator = lqgreg(kest, K);

This command forms the LQG regulator shown in the following figure.

u
y kest -K

u

LQG Regulator

The regulator has the following state-space equations:



 Functions for Compensator Design

4-207

d

dt
x A LC B LD K x Ly

u Kx

ˆ [ ( ) ] ˆ

ˆ

= - - - +

= -

For more information on forming LQG regulators, see the lqgreg reference page and
LQG Regulation: Rolling Mill Example.

Linear-Quadratic-Gaussian (LQG) Design of Servo Controller with Integral Action

You can design a servo controller with integral action for the following model:

kest
u

y

r

-K

u

Integrator
r-y

-

y

x

xi

LQG Servo Controller

w
v

y
Plant

The servo controller you design ensures that the output y tracks the reference command r
while rejecting process disturbances w and measurement noise v.

The plant in the previous figure is subject to disturbances w and is driven by controls u.
The servo controller relies on the noisy measurements y to generate these controls. The
plant state and measurement equations are of the form

&x Ax Bu Gw

y Cx Du Hw v

= + +

= + + +

and both w and v are modeled as white noise.

Note: LQG design requires a state-space model of the plant. You can use ss to convert
other model formats to state space.



4 Designing Compensators

4-208

To design LQG servo controllers, you can use the design techniques shown in the
following table.

To design an LQG servo controller using... Use the following commands:

A quick, one-step design technique when the
following is true:

• G is an identity matrix and H = 0.
• All known (deterministic) inputs are

control inputs and all outputs are
measured.

• Integrator states are weighted
independently of states of plants and
control inputs.

• The state estimator of the Kalman filter is
based on ˆ |x n n -[ ]1 .

lqg

For more information, see the lqg
reference page.

A more flexible, three-step design technique
that allows you to specify:

• Arbitrary G and H.
• Known (deterministic) inputs that are

not controls and/or outputs that are not
measured.

• A flexible weighting scheme for integrator
states, plant states, and controls.

• The state estimator of the Kalman filter
based on either ˆ |x n n[ ]  or ˆ |x n n -[ ]1 .

lqi, kalman, and lqgtrack

For more information, see

• “Constructing the Optimal State-
Feedback Gain for Servo Control” on
page 4-208

• “Constructing the Kalman State
Estimator” on page 4-209

• “Forming the LQG Servo Control” on
page 4-210

Constructing the Optimal State-Feedback Gain for Servo Control

You construct the LQ-optimal gain from the

• State-space plant model sys
• Weighting matrices Q, R, and N, which define the tradeoff between tracker

performance and control effort

To construct the optimal gain, type the following command:



 Functions for Compensator Design

4-209

K= lqi(sys,Q,R,N)

This command computes the optimal gain matrix K, for which the state feedback law
u Kz K x x

i
= - = - [ ; ] minimizes the following quadratic cost function for continuous time:

J u z Qz u Ru z Nu dtT T T
( ) = + +{ }•

Ú 2
0

The software computes the gain matrix K by solving an algebraic Riccati equation.

For information about constructing LQ-optimal gain, including the cost function that the
software minimizes for discrete time, see the lqi reference page.
Constructing the Kalman State Estimator

You need a Kalman state estimator for LQG regulation and servo control because you
cannot implement LQ-optimal state feedback without full state measurement.

You construct the state estimate x̂  such that u Kx= - ˆ  remains optimal for the output-
feedback problem. You construct the Kalman state estimator gain from the following
elements:

• State-space plant model sys
• Noise covariance data, Qn, Rn, and Nn

The following figure shows the required dimensions for Qn, Rn, and Nn. If Nn is 0, you
can omit it.

Required Dimensions for Qn, Rn, and Nn

Note: You construct the Kalman state estimator in the same way for both regulation and
servo control.



4 Designing Compensators

4-210

To construct the Kalman state estimator, type the following command:

[kest,L,P] = kalman(sys,Qn,Rn,Nn);

This command computes a Kalman state estimator, kest with the following plant
equations:

&x Ax Bu Gw

y Cx Du Hw v

= + +

= + + +

where w and v are modeled as white noise. L is the Kalman gain and P the covariance
matrix.

The software generates this state estimate using the Kalman filter

d

dt
x Ax Bu L y Cx Duˆ ˆ ( ˆ )= + + - -

with inputs u (controls) and y (measurements). The noise covariance data

E ww Q E vv R E wv NT
n

T
n

T
n( ) , ( ) , ( )= = =

determines the Kalman gain L through an algebraic Riccati equation.

The Kalman filter is an optimal estimator when dealing with Gaussian white noise.
Specifically, it minimizes the asymptotic covariance

    lim
t→∞

E x x x x
T−( ) −( )( )ˆ ˆ

of the estimation error x x- ˆ .

y

u Kalman
Estimator

x

For more information, see the kalman reference page. For a complete example of a
Kalman filter implementation, see Kalman Filtering.
Forming the LQG Servo Control

To form a two-degree-of-freedom LQG servo controller, connect the Kalman filter kest
and LQ-optimal gain K by typing the following command:

servocontroller = lqgtrack(kest, K);



 Functions for Compensator Design

4-211

This command forms the LQG servo controller shown in the following figure.

kest
u

y

r

-K

u

Integrator
r-y

-

y

x

xi

LQG Servo Controller

The servo controller has the following state-space equations:

ˆ ˆ&

&

x

x

A BK LC LDK BK LDK x

x

L

i

x x i i

i

È

Î
Í
Í

˘

˚
˙
˙

=
- - + - +È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ +

0 0

0

II I

r

y

u K K
x

xx i
i

-

È

Î
Í

˘

˚
˙
È

Î
Í

˘

˚
˙

= - -[ ]
È

Î
Í

˘

˚
˙

ˆ

For more information on forming LQG servo controllers, including how to form a one-
degree-of-freedom LQG servo controller, see the lqgtrack reference page.

Design an LQG Regulator

As an example of LQG design, consider the following regulation problem.

Plant

w

n

y

uy

LQG Regulator

10
s+10

d

u+d
F(s)



4 Designing Compensators

4-212

The goal is to regulate the plant output y around zero. The input disturbance d is low
frequency with power spectral density (PSD) concentrated below 10 rad/s. For LQG
design purposes, it is modeled as white noise driving a lowpass filter with a cutoff at 10
rad/s, shown in the following figure.

w (white noise)
10

s+10 d (colored noise)

For simplicity, this noise is modeled as Gaussian white noise with variance of 1.

The following figure shows the Bode magnitude of the shaping filter.

Bode Magnitude of the Lowpass Filter

There is some measurement noise n, with noise intensity given by

E n( ) .
2

0 01=



 Functions for Compensator Design

4-213

Use the cost function

J u y u dt( ) ( )= +
•

Ú 10
2 2

0

to specify the tradeoff between regulation performance and cost of control. The following
equations represent an open-loop state-space model:

&x Ax Bu Bd stateequations

y Cx n measurements

= + +

= +

( )

( )

where (A,B,C) is a state-space realization of 100 100
2

/ ( )s s+ + .

The following commands design the optimal LQG regulator F(s) for this problem:

sys = ss(tf(100,[1 1 100])) % State-space plant model

% Design LQ-optimal gain K

K = lqry(sys,10,1)  % u = -Kx minimizes J(u)

% Separate control input u and disturbance input d

P = sys(:,[1 1]);

% input [u;d], output y

% Design Kalman state estimator Kest.

Kest = kalman(P,1,0.01)

% Form LQG regulator = LQ gain + Kalman filter.

F = lqgreg(Kest,K)

These commands returns a state-space model F of the LQG regulator F(s). The lqry,
kalman, and lqgreg functions perform discrete-time LQG design when you apply them
to discrete plants.

To validate the design, close the loop with feedback, create and add the lowpass filter
in series with the closed-loop system, and compare the open- and closed-loop impulse
responses by using the impulse function.

% Close loop



4 Designing Compensators

4-214

clsys = feedback(sys,F,+1)

% Note positive feedback.

% Create the lowpass filter and add it in series with clsys.

s = tf('s');

lpf= 10/(s+10) ;

clsys_fin = lpf*clsys;

% Open- vs. closed-loop impulse responses

impulse(sys,'r--',clsys_fin,'b-')

These commands produce the following figure, which compares the open- and closed-loop
impulse responses for this example.

Comparison of Open- and Closed-Loop Impulse Response

Design an LQG Servo Controller

This example shows you how to design a servo controller for the following system.



 Functions for Compensator Design

4-215

u
y

r

LQG Servo Controller

w
v

y
Planttrksys

The plant has two states (x), two control inputs (u), two random inputs (w), one output
(y), measurement noise for the output (v), and the following state and measurement
equations:

&x Ax Bu Gw

y Cx Du Hw v

= + +

= + + +

where

A B G=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

-

0 1 0

0 0 1

1 0 0

0 3 1

0 1

0 3 0 9

0 7 1 12

1

.

. .

. .

..

. .

. . . . . .

17 1

0 14 1 5

1 9 1 3 1 0 53 0 61 1 2 0 89

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= [ ] = -[ ] = - -[C D H ]]

The system has the following noise covariance data:

Q E ww

Rn E vv

n
T

T

= =
È

Î
Í

˘

˚
˙

= =

( )

( ) .

4 2

2 1

0 7

Use the following cost function to define the tradeoff between tracker performance and
control effort:



4 Designing Compensators

4-216

J u x x x u u dt
T

i

T
( ) .= + +

È

Î
Í

˘

˚
˙

Ê

Ë
Á

ˆ

¯
˜

•
Ú 0 1

1 0

0 2

2

0

To design an LQG servo controller for this system:

1 Create the state space system by typing the following in the MATLAB Command
Window:

A = [0 1 0;0 0 1;1 0 0];    

B = [0.3 1;0 1;-0.3 0.9];

G = [-0.7 1.12; -1.17 1; .14 1.5];

C = [1.9 1.3 1];  

D = [0.53 -0.61];

H = [-1.2 -0.89];

sys = ss(A,[B G],C,[D H]);

2 Construct the optimal state-feedback gain using the given cost function by typing the
following commands:

nx = 3;    %Number of states

ny = 1;    %Number of outputs

Q = blkdiag(0.1*eye(nx),eye(ny));

R = [1 0;0 2];

K = lqi(ss(A,B,C,D),Q,R);

3 Construct the Kalman state estimator using the given noise covariance data by
typing the following commands:

Qn = [4 2;2 1]; 

Rn = 0.7;

kest = kalman(sys,Qn,Rn);

4 Connect the Kalman state estimator and the optimal state-feedback gain to form the
LQG servo controller by typing the following command:

trksys = lqgtrack(kest,K)

This command returns the following LQG servo controller:

>> trksys = lqgtrack(kest,K)

 

a = 

           x1_e    x2_e    x3_e     xi1

   x1_e  -2.373  -1.062  -1.649   0.772

   x2_e  -3.443  -2.876  -1.335  0.6351

   x3_e  -1.963  -2.483  -2.043  0.4049



 Functions for Compensator Design

4-217

   xi1        0       0       0       0

 

b = 

             r1      y1

   x1_e       0  0.2849

   x2_e       0  0.7727

   x3_e       0  0.7058

   xi1        1      -1

 

c = 

          x1_e     x2_e     x3_e      xi1

   u1  -0.5388  -0.4173  -0.2481   0.5578

   u2   -1.492   -1.388   -1.131   0.5869

 

d = 

       r1  y1

   u1   0   0

   u2   0   0

 

Input groups:              

       Name        Channels

     Setpoint         1    

    Measurement       2    

                           

Output groups:             

      Name      Channels   

    Controls      1,2      

                           

Continuous-time model.

Design an LQR Servo Controller in Simulink

The following figure shows a Simulink block diagram shows a tracking problem in
aircraft autopilot design. To open this diagram, type lqrpilot at the MATLAB prompt.



4 Designing Compensators

4-218

Key features of this diagram to note are the following:

• The Linearized Dynamics block contains the linearized airframe.
• sf_aerodyn is an S-Function block that contains the nonlinear equations for

( , ) ( , )q f = 0 15o .

• The error signal between f  and the fref  is passed through an integrator. This aids in
driving the error to zero.

State-Space Equations for an Airframe

Beginning with the standard state-space equation

&x Ax Bu= +

where

x u v w p q r T= [ , , , , , , , ]q f



 Functions for Compensator Design

4-219

The variables u, v, and w are the three velocities with respect to the body frame, shown
as follows.

Body Coordinate Frame for an Aircraft

The variables f  and q  are roll and pitch, and p, q, and r are the roll, pitch, and yaw
rates, respectively.

The airframe dynamics are nonlinear. The following equation shows the nonlinear
components added to the state space equation.

&x Ax Bu

g

g

g

q r

q r

= + +

-

-

+

sin

cos sin

cos cos

cos sin

( sin cos

q

q f

q f

f f

f

0

0

0

ff q) tan◊

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

Nonlinear Component of the State-Space Equation

To see the numerical values for A and B, type

load lqrpilot

A, B



4 Designing Compensators

4-220

at the MATLAB prompt.

Trimming

For LQG design purposes, the nonlinear dynamics are trimmed at f = 15
o  and p, q, r,

and θ set to zero. Since u, v, and w do not enter into the nonlinear term in the preceding
figure, this amounts to linearizing around ( , ) ( , )q f = 0 15o  with all remaining states set to
zero. The resulting state matrix of the linearized model is called A15.

Problem Definition

The goal to perform a steady coordinated turn, as shown in this figure.

Aircraft Making a 60° Turn

To achieve this goal, you must design a controller that commands a steady turn by going
through a 60° roll. In addition, assume that θ, the pitch angle, is required to stay as close
to zero as possible.

Results

To calculate the LQG gain matrix, K, type

lqrdes

at the MATLAB prompt. Then, start the lqrpilot model with the nonlinear model,
sf_aerodyn, selected.

This figure shows the response of f  to the 60° step command.



 Functions for Compensator Design

4-221

Tracking the Roll Step Command

As you can see, the system tracks the commanded 60° roll in about 60 seconds.

Another goal was to keep θ, the pitch angle, relatively small. This figure shows how well
the LQG controller did.

Minimizing the Displacement in the Pitch Angle, Theta

Finally, this figure shows the control inputs.



4 Designing Compensators

4-222

Control Inputs for the LQG Tracking Problem

Try adjusting the Q and R matrices in lqrdes.m and inspecting the control inputs and
the system states, making sure to rerun lqrdes to update the LQG gain matrix K.
Through trial and error, you may improve the response time of this design. Also, compare
the linear and nonlinear designs to see the effects of the nonlinearities on the system
performance.



 State Estimation Using Time-Varying Kalman Filter

4-223

State Estimation Using Time-Varying Kalman Filter

This example shows how to estimate states of linear systems using time-varying Kalman
filters in Simulink. You use the Kalman Filter block from the Control System Toolbox
library to estimate the position and velocity of a ground vehicle based on noisy position
measurements such as GPS sensor measurements. The plant model in Kalman filter has
time-varying noise characteristics.

Introduction

You want to estimate the position and velocity of a ground vehicle in the north and
east directions. The vehicle can move freely in the two-dimensional space without any
constraints. You design a multi-purpose navigation and tracking system that can be used
for any object and not just a vehicle.

 and  are the vehicle's east and north positions from the origin,  is the
vehicle orientation from east and  is the steering angle of the vehicle.  is the
continuous-time variable.



4 Designing Compensators

4-224

The Simulink model consists of two main parts: Vehicle model and the Kalman filter.
These are explained further in the following sections.

open_system('ctrlKalmanNavigationExample');

Vehicle Model

The tracked vehicle is represented with a simple point-mass model:

where the vehicle states are:

the vehicle parameters are:



 State Estimation Using Time-Varying Kalman Filter

4-225

and the control inputs are:

The longitunidal dynamics of the model ignore tire rolling resistance. The lateral
dynamics of the model assume that the desired steering angle can be achieved
instantaneously and ignore the yaw moment of inertia.

The car model is implemented in the ctrlKalmanNavigationExample/Vehicle
Model subsystem. The Simulink model contains two PI controllers for tracking the
desired orientation and speed for the car in the ctrlKalmanNavigationExample/
Speed And Orientation Tracking subsystem. This allows you to specify various
operating conditions for the car test the Kalman filter performance.

Kalman Filter Design

Kalman filter is an algorithm to estimate unknown variables of interest based on a linear
model. This linear model describes the evolution of the estimated variables over time in
response to model initial conditions as well as known and unknown model inputs. In this
example, you estimate the following parameters/variables:

where



4 Designing Compensators

4-226

The  terms denote velocities and not the derivative operator.  is the discrete-time
index. The model used in the Kalman filter is of the form:

where  is the state vector,  is the measurements,  is the process noise, and  is the
measurement noise. Kalman filter assumes that  and  are zero-mean, independent
random variables with known variances , , and .
Here, the A, G, and C matrices are:

where 

The third row of A and G model the east velocity as a random walk:

. In reality, position is a continuous-time variable

and is the integral of velocity over time . The first row of the A
and G represent a disrete approximation to this kinematic relationship:

. The second and fourth rows of the A and
G represent the same relationship between the north velocity and position.

The C matrix represents that only position measurements are available. A position
sensor, such as GPS, provides these measurements at the sample rate of 1Hz. The
variance of the measurment noise , the R matrix, is specified as . Since R is
specified as a scalar, the Kalman filter block assumes that the matrix R is diagonal, its
diagonals are 50 and is of compatible dimensions with y. If the measurement noise is



 State Estimation Using Time-Varying Kalman Filter

4-227

Gaussian, R=50 corresponds to 68% of the position measurements being within 
or the actual position in the east and north directions. However, this assumption is not
necessary for the Kalman filter.

The elements of  capture how much the vehicle velocity can change over one sample
time Ts. The variance of the process noise w, the Q matrix, is chosen to be time-varying.
It captures the intuition that typical values of  are smaller when velocity is large.
For instance, going from 0 to 10m/s is easier than going from 10 to 20m/s. Concretely, you
use the estimated north and east velocities and a saturation function to construct Q[n]:

The diagonals of Q model the variance of w inversely proportional to the square of the
estimated velocities. The saturation function prevents Q from becoming too large or
small. The coefficient 250 is obtained from a least squares fit to 0-5, 5-10, 10-15, 15-20,
20-25m/s acceleration time data for a generic vehicle. Note that the diagonal Q implies
a naive approach that assumes that the velocity changes in north and east direction are
uncorrelated.

Kalman Filter Block Inputs and Setup

The 'Kalman Filter' block is in the Control System Toolbox library in Simulink. It is
also in System Identification Toolbox/Estimators library. Configure the block
parameters for discrete-time state estimation. Specify the following Filter Settings
parameters:

• Time domain: Discrete-time. Choose this option to estimate discrete-time states.

• Select the Use current measurement y[n] to improve the xhat[n] check box.
This implements the "current estimator" variant of the discrete-time Kalman filter.
This option improves the estimation accuracy and is more useful for slow sample
times. However, it increases the computational cost. In addition, this Kalman filter
variant has direct feedthrough, which leads to an algebraic loop if the Kalman filter is
used in a feedback loop that does not contain any delays (the feedback loop itself also
has direct feedthrough). The algebraic loop can further impact the simulation speed.



4 Designing Compensators

4-228

Click the Options tab to set the block inport and outport options:

• Unselect the Add input port u check box. There are no known inputs in the plant
model.

• Select the Output state estimation error covariance Z check box. The Z matrix
provides information about the filter's confidence in the state estimates.



 State Estimation Using Time-Varying Kalman Filter

4-229

Click Model Parameters to specify the plant model and noise characteristics:

• Model source: Individual A, B, C, D matrices.

• A: A. The A matrix is defined earlier in this example.

• C: C. The C matrix is defined earlier in this example.

• Initial Estimate Source: Dialog

• Initial states x[0]: 0. This represents an initial guess of 0 for the position and
velocity estimates at t=0s.

• State estimation error covariance P[0]: 10. Assume that the error between your
initial guess x[0] and its actual value is a random variable with a standard deviation

.

• Select the Use G and H matrices (defalut G=I and H=0) check box to specify a
non-default G matrix.

• G: G. The G matrix is defined earlier in this example.

• H: 0. The process noise does not impact the measurments y entering the Kalman filter
block.

• Unselect the Time-invariant Q check box. The Q matrix is time-varying and is
supplied through the block inport Q. The block uses a time-varying Kalman filter
due to this setting. You can select this option to use a time-invariant Kalman filter.
Time-invariant Kalman filter performs slightly worse for this problem, but is easier to
design and has a lower computational cost.

• R: R. This is the covariance of the measurement noise . The R matrix is defined
earlier in this example.

• N: 0. Assume that there is no correlation between process and measurement noises.

• Sample time (-1 for inherited): Ts, which is defined earlier in this example.



4 Designing Compensators

4-230



 State Estimation Using Time-Varying Kalman Filter

4-231

Results

Test the performance of the Kalman filter by simulating a scenario where the vehicle
makes the following maneuvers:

• At t = 0 the vehicle is at ,  and is stationary.

• Heading east, it accelerates to 25m/s. It decelerates to 5m/s at t=50s.

• At t = 100s, it turns toward north and accelerates to 20m/s.

• At t = 200s, it makes another turn toward west. It accelerates to 25m/s.

• At t = 260s, it decelerates to 15m/s and makes a constant speed 180 degree turn.

Simulate the Simulink model. Plot the actual, measured and Kalman filter estimates of
vehicle position.

sim('ctrlKalmanNavigationExample');

figure(1);

% Plot results and connect data points with a solid line.

plot(x(:,1),x(:,2),'bx',...

    y(:,1),y(:,2),'gd',...

    xhat(:,1),xhat(:,2),'ro',...

    'LineStyle','-');

title('Position');

xlabel('East [m]');

ylabel('North [m]');

legend('Actual','Measured','Kalman filter estimate','Location','Best');

axis tight;



4 Designing Compensators

4-232

The error between the measured and actual position as well as the error between the
kalman filter estimate and actual position is:

% East position measurement error [m]

n_xe = y(:,1)-x(:,1);

% North position measurement error [m]

n_xn = y(:,2)-x(:,2);

% Kalman filter east position error [m]

e_xe = xhat(:,1)-x(:,1);

% Kalman filter north position error [m]

e_xn = xhat(:,2)-x(:,2);

figure(2);

% East Position Errors



 State Estimation Using Time-Varying Kalman Filter

4-233

subplot(2,1,1);

plot(t,n_xe,'g',t,e_xe,'r');

ylabel('Position Error - East [m]');

xlabel('Time [s]');

legend(sprintf('Meas: %.3f',norm(n_xe,1)/numel(n_xe)),sprintf('Kalman f.: %.3f',norm(e_xe,1)/numel(e_xe)));

axis tight;

% North Position Errors

subplot(2,1,2);

plot(t,y(:,2)-x(:,2),'g',t,xhat(:,2)-x(:,2),'r');

ylabel('Position Error - North [m]');

xlabel('Time [s]');

legend(sprintf('Meas: %.3f',norm(n_xn,1)/numel(n_xn)),sprintf('Kalman f: %.3f',norm(e_xn,1)/numel(e_xn)));

axis tight;



4 Designing Compensators

4-234

The plot legends show the position measurement and estimation error (  and
) normalized by the number of data points. The Kalman filter estimates have

about 25% percent less error than the raw measurements.

The actual velocity in the east direction and its Kalman filter estimate is shown below in
the top plot. The bottom plot shows the estimation error.

e_ve = xhat(:,3)-x(:,3); % [m/s] Kalman filter east velocity error

e_vn = xhat(:,4)-x(:,4); % [m/s] Kalman filter north velocity error

figure(3);

% Velocity in east direction and its estimate

subplot(2,1,1);

plot(t,x(:,3),'b',t,xhat(:,3),'r');

ylabel('Velocity - East [m]');

xlabel('Time [s]');

legend('Actual','Kalman filter','Location','Best');

axis tight;

subplot(2,1,2);

% Estimation error

plot(t,e_ve,'r');

ylabel('Velocity Error - East [m]');

xlabel('Time [s]');

legend(sprintf('Kalman filter: %.3f',norm(e_ve,1)/numel(e_ve)));

axis tight;



 State Estimation Using Time-Varying Kalman Filter

4-235

The legend on the error plot shows the east velocity estimation error 
normalized by the number of data points.

The Kalman filter velocity estimates track the actual velocity trends correctly. The noise
levels decrease when the vehicle is traveling at high velocities. This is in line with the
design of the Q matrix. The large two spikes are at t=50s and t=200s. These are the times
when the car goes through sudden decelearation and a sharp turn, respectively. The
velocity changes at those instants are much larger than the predictions from the Kalman
filter, which is based on its Q matrix input. After a few time-steps, the filter estimates
catch up with the actual velocity.



4 Designing Compensators

4-236

Summary

You estimated the position and velocity of a vehicle using the Kalman filter block in
Simulink. The process noise dynamics of the model were time-varying. You validated
the filter performance by simulating various vehicle maneuvers and randomly generated
measurement noise. The Kalman filter improved the position measurements and
provided velocity estimates for the vehicle.

bdclose('ctrlKalmanNavigationExample');



 Kalman Filter Design

4-237

Kalman Filter Design

This example shows how to perform Kalman filtering. Both a steady state filter and a
time varying filter are designed and simulated below.

Problem Description

Given the following discrete plant

where

A = [1.1269   -0.4940    0.1129,

     1.0000         0         0,

          0    1.0000         0];

B = [-0.3832

      0.5919

      0.5191];

C = [1 0 0];

D = 0;

design a Kalman filter to estimate the output y based on the noisy measurements yv[n] =
C x[n] + v[n]

Steady-State Kalman Filter Design

You can use the function KALMAN to design a steady-state Kalman filter. This function
determines the optimal steady-state filter gain M based on the process noise covariance
Q and the sensor noise covariance R.

First specify the plant + noise model. CAUTION: set the sample time to -1 to mark the
plant as discrete.

Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},'outputname','y');



4 Designing Compensators

4-238

Specify the process noise covariance (Q):

Q = 2.3; % A number greater than zero

Specify the sensor noise covariance (R):

R = 1; % A number greater than zero

Now design the steady-state Kalman filter with the equations

   Time update:         x[n+1|n] = Ax[n|n-1] + Bu[n]

   Measurement update:  x[n|n] = x[n|n-1] + M (yv[n] - Cx[n|n-1])

                        where M = optimal innovation gain

using the KALMAN command:

[kalmf,L,~,M,Z] = kalman(Plant,Q,R);

The first output of the Kalman filter KALMF is the plant output estimate y_e = Cx[n|n],
and the remaining outputs are the state estimates. Keep only the first output y_e:

kalmf = kalmf(1,:);

M,   % innovation gain

M =

    0.5345

    0.0101

   -0.4776

To see how this filter works, generate some data and compare the filtered response with
the true plant response:



 Kalman Filter Design

4-239

To simulate the system above, you can generate the response of each part separately or
generate both together. To simulate each separately, first use LSIM with the plant and
then with the filter. The following example simulates both together.

% First, build a complete plant model with u,w,v as inputs and

% y and yv as outputs:

a = A;

b = [B B 0*B];

c = [C;C];

d = [0 0 0;0 0 1];

P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},'outputname',{'y' 'yv'});

Next, connect the plant model and the Kalman filter in parallel by specifying u as a
shared input:

sys = parallel(P,kalmf,1,1,[],[]);

Finally, connect the plant output yv to the filter input yv. Note: yv is the 4th input of SYS
and also its 2nd output:

SimModel = feedback(sys,1,4,2,1);

SimModel = SimModel([1 3],[1 2 3]);     % Delete yv form I/O

The resulting simulation model has w,v,u as inputs and y,y_e as outputs:

SimModel.inputname



4 Designing Compensators

4-240

ans = 

    'w'

    'v'

    'u'

SimModel.outputname

ans = 

    'y'

    'y_e'

You are now ready to simulate the filter behavior. Generate a sinusoidal input vector
(known):

t = (0:100)';

u = sin(t/5);

Generate process noise and sensor noise vectors:

rng(10,'twister');

w = sqrt(Q)*randn(length(t),1);

v = sqrt(R)*randn(length(t),1);

Now simulate the response using LSIM:

out = lsim(SimModel,[w,v,u]);

y = out(:,1);   % true response

ye = out(:,2);  % filtered response

yv = y + v;     % measured response

Compare the true response with the filtered response:

clf

subplot(211), plot(t,y,'b',t,ye,'r--'),

xlabel('No. of samples'), ylabel('Output')

title('Kalman filter response')

subplot(212), plot(t,y-yv,'g',t,y-ye,'r--'),



 Kalman Filter Design

4-241

xlabel('No. of samples'), ylabel('Error')

As shown in the second plot, the Kalman filter reduces the error y-yv due to
measurement noise. To confirm this, compare the error covariances:

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);

EstErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

Covariance of error before filtering (measurement error):

MeasErrCov



4 Designing Compensators

4-242

MeasErrCov =

    0.9871

Covariance of error after filtering (estimation error):

EstErrCov

EstErrCov =

    0.3479

Time-Varying Kalman Filter Design

Now, design a time-varying Kalman filter to perform the same task. A time-varying
Kalman filter can perform well even when the noise covariance is not stationary.
However for this example, we will use stationary covariance.

The time varying Kalman filter has the following update equations.

   Time update:        x[n+1|n] = Ax[n|n] + Bu[n]

                       P[n+1|n] = AP[n|n]A' + B*Q*B'

   Measurement update:

                       x[n|n] = x[n|n-1] + M[n](yv[n] - Cx[n|n-1])

                                                         -1

                       M[n] = P[n|n-1] C' (CP[n|n-1]C'+R)

                       P[n|n] = (I-M[n]C) P[n|n-1]

First, generate the noisy plant response:

sys = ss(A,B,C,D,-1);

y = lsim(sys,u+w);   % w = process noise

yv = y + v;          % v = meas. noise

Next, implement the filter recursions in a FOR loop:

P=B*Q*B';         % Initial error covariance



 Kalman Filter Design

4-243

x=zeros(3,1);     % Initial condition on the state

ye = zeros(length(t),1);

ycov = zeros(length(t),1);

errcov = zeros(length(t),1);

for i=1:length(t)

  % Measurement update

  Mn = P*C'/(C*P*C'+R);

  x = x + Mn*(yv(i)-C*x);  % x[n|n]

  P = (eye(3)-Mn*C)*P;     % P[n|n]

  ye(i) = C*x;

  errcov(i) = C*P*C';

  % Time update

  x = A*x + B*u(i);        % x[n+1|n]

  P = A*P*A' + B*Q*B';     % P[n+1|n]

end

Now, compare the true response with the filtered response:

subplot(211), plot(t,y,'b',t,ye,'r--'),

xlabel('No. of samples'), ylabel('Output')

title('Response with time-varying Kalman filter')

subplot(212), plot(t,y-yv,'g',t,y-ye,'r--'),

xlabel('No. of samples'), ylabel('Error')



4 Designing Compensators

4-244

The time varying filter also estimates the output covariance during the estimation. Plot
the output covariance to see if the filter has reached steady state (as we would expect
with stationary input noise):

subplot(211)

plot(t,errcov), ylabel('Error Covar'),



 Kalman Filter Design

4-245

From the covariance plot you can see that the output covariance did reach a steady state
in about 5 samples. From then on, the time varying filter has the same performance as
the steady state version.

Compare covariance errors:

MeasErr = y-yv;

MeasErrCov = sum(MeasErr.*MeasErr)/length(MeasErr);

EstErr = y-ye;

EstErrCov = sum(EstErr.*EstErr)/length(EstErr);

Covariance of error before filtering (measurement error):

MeasErrCov



4 Designing Compensators

4-246

MeasErrCov =

    0.9871

Covariance of error after filtering (estimation error):

EstErrCov

EstErrCov =

    0.3479

Verify that the steady-state and final values of the Kalman gain matrices coincide:

M,Mn

M =

    0.5345

    0.0101

   -0.4776

Mn =

    0.5345

    0.0101

   -0.4776


